Y26-3598-0

Program Logic

IBM SYSTEM/360 OPERATING SYSTEM
ASSEMBLER (32K)
PROGRAM LOGIC MANUAL

This publication describes the internal logic of the
32K Assembler for IBM System/360 Operating System.
It is intended for use by persons involved in
program maintenance, and system programmers who

are altering the program design. Program Logic
information is not necessary for the use and
operation of the program; therefore, distribution

of this publication is limited to those with the
aforementioned requirements.

RESTRICTED DISTRIBUTION -- SEE ABSTRACT

PREFACE

PREREQUISITE AND RELATED LITERATURE

Effective use of this Program Logic
Manual (PLM) requires a thorough
understanding of the contents of the
publication IBM Operating System/360,
Assembler Language (Form C28-6514).

DESIGN OF THIS PUBLICATION

This PLM supplements the program listing.
Labels on flowcharts are keyed to the
program listing.

This manual consists of an introduction,
two sections containing detailed infor-
mation about the various phases, and a
section of reference material.

The Introduction describes the purpose
of the program, its relationship to the
Operating System, the I/0 devices required
to perform the program, and the program
organization.

The phase descriptions describe the
phase logic and functions performed by
the phase. The labels in the 'Routine
Description' portion of each phase are
arranged alphabetically, assuming that
the user will be coming to the descrip-
tions from a flowchart, looking for an
explanation of a label encountered in one
of the flowcharts.

The reference section of the manual
consists of flowcharts, appendixes, and a
glossary of terms.

Copies of this and other IBM publications can be obtained through IBM

Branch Offices.
for reader's comments.

A form has been provided at the back of this publication
If the form has been detached, comments may be

directed to: IBM Corporation, Programming Publications, Department 232,

San Jose, California 95114.

© International Business Machines Corporation

1966

INTRODUCTION ¢ ccecosoeseses ceve v
Purpose of the Assembler «..«....
System Environment «ececcccone.. e

Use of Additional Facilities «.-.-
Main Storage «-.-.-.
Control Program Services «:..--

Program Organization «.ceecocescese
Major Components .
Program Flow .

...... o s 0 e 000

..... LECRraRY

MACRO GENERATOR
ASSEMBLY PHASES
Program Segment
Program Segment MAC ...
Program Segment INP
Phase El secocscecssasse
Functions
Routine Descriptions «e.cceeeee.
Phase E2/E2A
Functions
Routine Descriptions
Phase E3/E3A
Functions
Routine Descriptions ..«.eces..
Phase E4P/E4M/E4S «veceracecronne
Functions
Routine Descriptionse..scece...
Phase E5P/E5/ES5A/ESE +ecocvocaces
Functions
Routine Descriptions sceceeeececes

s s s s e e

ASM ceeese

e e s s s e s e

P N A A A I I I RN AR R B

s e s e e s e s e

ASSEMBLY PHASES s+«
Program Segment RTA ««<...
Phase 07/07A/07B +ceeecoconcns
Functions
Routine Descriptions «eceeecees

Phase 07T

FUNCLIiONS ecoocveoccscssansocscs
Routine Descriptionse«s:scce.. .
Phase 08/08A/08B «cceecececcvans .
FUNCtions scevessseescssconccccs

Routine Descriptions eceececececen..

Program Segment RTB .
Phase 09
Functions
Routine Descriptions +.....
Phase 09I
Functions
Routine Descriptions.-«-seceecess
Phase 10
-Functions
Routine Descriptions .eeccecececs
Phase 10B +ssccceoees
Functions
Routine Descriptions ..
Phase 21A --:

P R R R A R I I B R A R R

e s s s e s e e 0 00000

e e e 0 s 008 s s e e 0 s s s 00

e s e e s e s o0 s

e e s o0 e e s s e e s

NNV NNNN

W WO WO oo 00w

iii

CONTENTS

FPUnNctions eeeesecocsccen
Routine Descriptions «-+--
Phase 21B/21C/21D .-
FUNCEI1ONS seceosecascssscocccs
Routine Descriptions se«cse---
Phase PP +ceerones
Functions
Routine Descriptions sceceececcecene.
Phase DI eeecoees
FUNCEIONS sescesoscscscscasccnnssonons
Routine Descriptions ««ccesecenccnces

-
.

e s e e e s s e 00 e e

e s s s e e 00 .

R I R I R R R N R R N R N]

FLOWCHARTS <+«

----- v e s 00 e s s e 00 e s e

APPENDIX A. INTERNAL ASSEMBLER

INSTRUCTION CODES e

APPENDIX B. TRANSLATE TABLE «escessvosce
APPENDIX C. TYPE INDICATORS AND

FLAGA «coeeesne et eeesnees
APPENDIX D. RECORD FORMATS +sscseocecess
APPENDIX E. WORK BUCKET FORMATS «¢os >
APPENDIX F. MACRO GENERATOER SCAN

CONTROL FLAGS ¢eseeccasssse
APPENDIX G. MACRO GENERATOR VALUE

ASSIGNMENT FOR EX-

PRESSION EVALUATION «: ¢«
APPENDIX H. MACRO GENERATOR VALUES

OF PARAMETER TYPE~-

ATTRIBUTES cccoceccoscocesns .
APPENDIX I. TABLE FORMATS ceccceccccnne
APPENDIX J. HASH TABLE ¢ ccccceosns cenn
APPENDIX K. APPROXIMATE MAIN .

STORAGE ALLOCATION «esoesve
APPENDIX L. CONTROL PROGRAM

SERVICES +tseecessscen P
APPENDIX M. CONTROL PROGRAM

SERVICES USAGE ccosvceesnes
APPENDIX N. MACRO INSTRUCTION PARAM-

ETER TABLE ENTRIES....... .
GLOSSARY tccvveoscscaassssstrsscasssssns
INDEX scvceoecsesonns e seraenes e

79

80

81
84

97

103

104

105
106

113

115

116

117

118

ILLUSTRATIONS

Chart 0l., TETE]l ceveeeocecnesossassocese 43 Chart 19. IET09 veeeveeen. ceecesessosssarsas 64
Chart 02. IETE2 ceceeoesccccssssssnaasasns 44 Charts 20, 21, IETO09T ccecseeseccsonssnes 65
Chart 03. IETE2A cccceenaacassen ceieesenase 45 Charts 22, 23, 24. IET10 cceoceocacnsaans 67
Chart 04. IETE3 cccecscacccann ceessssess 46 Chart 25. IET1O0B ¢ v v eesevenanccncnccns eee 70
Chart 05, IETE3A ¢ e ceessscsasanncscsecnse 47 Charts 26, 27. IET21A +:cceerevensocccnsas 71
Chart 06. TIETE4P «vveuenn. Ceeeieraanaae. 48 Charts 28, 29, 30. IET21B/21C/21D:.++... 73
Charts 07, 08. IETE4M «vesvesn cesecesecass 49 Chart 31. TETPP eccecevecacssssssacsscnse 76
Chart 09. IETEAS s eveseecesssasessansnsns 5L Chart 32. IETDI ceeeeecsnccsancanssssnnes 77
Chart 10. IETESP eeeetecessesnssannsanas 52
Charts 11, 12, TETES s e et cnnn s+es¢ 53 Figure 1. General Organization of
Chart 13. IETESA ceeeveren cesesscnaresas 55 the Operating System.ccceceeeeocenonn .1
Chart 14. IETESE cvcvce.. ctsecenesesssss 56 Figure 2. Assembler I/0 Requirements 1
Charts AA, AB, AC. Phase E5 Figure 3. Program FlOW :ceeeeescecsceecee 3
VALUAT RoOUtine ceeeeececncneneannnans . 57 Figure 4. I/O FlOW eeceessen sesecsnenas .. 4
Charts 15, 16. IET07/07A/07B cecccecseces 60 Figure 5. Building the Literal Table.... 23
Chart 17. IETO7I «+evv-- tedeceencennsess 62 Figure 6. Table Creation During
Chart 18. IET08/08A/08B «scveecececseases 63 Phase 09T ccicceverresessocvensonsannsss 30

iv

PURPOSE OF THE ASSEMBLER

IBM System/360 Operating System consists of
a control program and a number of proces-
sing programs (Figure 1). The control pro-
gram governs the order in which the proces-
sing programs are executed and provides
services that are required in common by the
processing programs during their execution.
The processing programs consist of language
translators and service programs that are
provided by IBM to assist the user of the
system, as well as problem programs that
are written by the user and incorporated as
part of the system.

The assembler translates a source pro-
gram, coded in IBM System/360 Operating
System Assembler Language, into a relocat-
able machine-language object program,
assigns storage locations to instructions
and other elements of the program, and per-
forms auxiliary assembler functions desig-
nated by the programmer. Several optional
outputs are available, including a printed
listing of the source and object statements,
TESTRAN cross reference listing, and addi-
tional information useful to the programmer
in analyzing his program, such as error
indications.

IBM
SYSTEM/360
OPERATING
SYSTEM
Control Language User-Written Service
Program translators Problem programs
eAssembler Programs elLinkage
oCOBOL Editor
oF ORTRAN eSort/
Merge
oUtilities

General Organization of the
Operating System

Figure 1.

INTRODUCTION

SYSTEM ENVIRONMENT

The Assembler operates as a processor pro-
gram under 0S/360 on System/360 Models 30,
40, 50, 65, and 75, with at least 32, 768
bytes of main storage.

The minimum System/360 I/O requirements
are as follows (see Figure 2):

SYSPRINT

SYSRES

(SYSPUNCH

15,360 bytes

minimum

Figure 2.

Input/Output Requirements

Introduction 1

e Minimum requirements of the 0S/360 Control PROGRAM ORGANIZATION
Program

e At least 15,360 bytes of contiguous main .
storage available to Assembler Major Components

® Data sets having the following DD names:
SYSRES - System Residence data set con-
taining the Assembler Program, the 0S/360
Control Program, etc. SYSRES must be
DASD resident.
SYSIN (BSAM) data set containing source

The Assembler consists of the following
major companents (throughout this manual
the IET portion of each phase name is not
used when referring to the various phases) :

statement text for assembly. SYSIN may Formal Name Abbreviated Name®
be DASD, magnetic tape, or card resident. [

The format is card images of 80 bytes per IETASM (Resident) AFF

logical record, unblocked. IETMAC ACF

SYSLIB - Assembler Source Library (BPAM) IETINP DCB

data set containing system macro defini- IETEL 1FF

tions, and source text which may be IETE2/E2A 2FF/2AF
COPYed into the main text of the program IETE3/E3A 3FF/3AF

or into programmer and system macro IETE4P/E4M/E4S 40F/4FF/4AF
definitions. IETESP/E5/E5A/ESE 50F/5FF/5AF/5EF
SYSPRINT (BSAM) data set on which the IETRTA 6AF
assembler will place output text for IET07/07A/07B 7FF
printing; SYSPRINT may be printer, mag- IETO07I 7DF

netic tape, or DASD resident. The format IET08/08A/08B 8FF

is 121-byte logical records, unblocked. IETRTB 6BF
SYSPUNCH (BSAM) data set. The output IETO09 9FF

text produced (relocatable object pro- IET09I 9DF

gram) may be included in one data set IET10 10F

with the DECK or LOAD option. Separate IET10B 10B

DECK and LOAD data sets are not supported. IET21A 21A

The format is 81 bytes per logical record IET21B/21C/21D 21B/21C/21D
(80 on card), unblocked. SYSPUNCH output IETPP CFF

may be on cards, DASD, or magnetic tape. IETDI DFF

SYSUT1, SYSUT2, SYSUT3 (BSAM)) Utility data
sets used for external storage; the use

and formats of these data sets will vary
from one phase to another. All text, cer-
tain tables, and table segments reside on
these data sets which may be DASD,

magnetic tape, or mixed.

*To assist in identifying core dumps, the
first three bytes of each phase contain
an abbreviated hexadecimal phase name and
the phase model and level as follows.

NOTE: Standard labels are required on X'E21B31'

disk-resident data sets; standard labels .

or no labels may be used with magnetic tape Digit Significance

resident data sets. User labels are not

supported. 1 E for Assembler E (32K)
2-4 Abbreviated Phase Name
5 Model

USE OF ADDITIONAL FACILITIES) 6 Level

Main Storage Program Flow - figure 3

Additional main storage, if available, will

be used to expand certain tables. The Assembler performs two major functions

in processing source programs: nacro gen-
eration and conditional assembly, and sym-
bolic to machine language assembly.
Control Program Services At the beginning of the program, the
resident portion of the Assembler is read
into main storage. This portion of the

The Assembler uses the control program ser- assembler contains I/0 tables and other
vices listed in Appendix L. The data sets information required by the macro generator
and assembler phases using these services and assembly portions. The resident portion
are shown in Appendix M. passes control to MAC which in trn passes

2

control to Phase El to begin macro gen-
eration.

The generator portion (Phases El1 through
E5) reads in copy code, performs conditional
assembly, and expands macro-instructions
into one-for-one statements. The last macro
generator phase returns control to MAC which
passes control to RTA. RTA calls the first
assembly phase (07).

The assembly phases (07 through DI) con-

ASM END
\

El }»{ E2
LOAD
INP E2A [E3 [*| E4P
DELETE
INP ‘ f ‘
E3A E4M '760 E5E
{ 1 X fAbort
E4S E5P > E5
y !
E5A
N\
RTA —.(:)
\
AN
i
‘\
1 F— 9 <
|r 07 » 071 r 08 < RTI\S\
|3 7| | 77 |
L[oTo]1 eanal
Al B A B
09 = 09I 21A -: 218 ;b PP e DI
| |
) Iy v
L 2 4
10 108 141
CibD
Figure 3. Program Flow

vert one-for-one statements into machine
language instructions and constants, produce
a relocatable object program, listings and
cross~references, and print diagnostics.
The last assembly phase returns control to
RTB which passes control to RTA which, in
turn, passes control back to resident phase
ASM.

FPigure 4 illustrates the I/O flow for
each phase of the program.

Source Text

;

Source Text,
System Macros,

®

COPYed
Text
PARTIAL
TEXT
SCAN
N~

Macro
COPYed Text
Op Code
and
System Table
4 Overflow
Macros

Relevant
Ordinary
Symbol Table
OVQI’HOW SYSUT3

Input/Output Flow (Part 1 of 5)

N

Figure 4.

Introduction 3

Figure 4.

Source, Fully-edited Text

E4
Source,
GENERAL Partially-edited
DICTIONARY Text
COLLECTION SYSUT2

ES

CONDITIONAL
ASSEMBLY
AND
GENERATION

&)

Input/Output Flow (Part 2 of 5)

Fully Edited Text
for Macro Definitions,
Dictionary Segments,
Macro Dictionary

Relevant
Ordinary,
Symbol
Table

Figure 4.

Li

07

iteral Table
Overflow

Symbol List
Segments

LITERAL
COLLECTION

Text SYSUT2

071

Text Statements
with Workbyckets

SYSUTI

Symbol List

INTERLUDE

Segments

SYSUT3

08

Segments

Symbol List SYSUT3

Table Segments
et
(—_50 GeQ

STORAGE
ASSIGNMENT

Text
f@— |nput First
or Only pass

SYSUT2

S,

Alternate
Text for ecich
Output First pass
or Only Pass

Input/Output Flow (Part 3 of 5)

®

Symbol Table Segments

Literal Base Table (If overflow)

BUILD
SYMBOL

2

Text

TABLE

~N

Li

091

PUNCH or REPRO Data

TESTRAN
Symbol Table

5

teral Adjustment Table

\®

ESD, Literal Base,
Symbol Table
Segments, Adjusted
Symbol Table
Segments

N

. ESD | ESD Object .
QUTPUT Code
\
ESD Listing
55~ @
10 ¢ Adjusted Symbol
Toble Segments
SYMBOL |e—" Literal Ad-

SUBSTITUTION ‘went Table

Text Text

&3

108 Depends on
location of
EXPRESSION text at end
AND DECIMAL of Phase 08
CONSTANT
EVALUATION

&

Figure 4.

C

Depends on
location of
text at end
of Phase 10

Input/Output Flow (Part 4 of 5)

et
21A
MACHINE Depends on
ot e e
of Phase 108

Depends on
location of
text at end
of Phase 21A

RLD Table,
Error Records

| il

DECLARATIVE
PROCESSING
AND OUTPUT

Object .
Program

Program Listing

POST
PROCESSOR

Symbol
Cross-Reference List

Diagnostic

ol ol &l 6

Messages,
| Program

DIAGNOSTICI g, tictics

Figure 4.

&l

A

Control
Program

Input/Output Flow (Part 5 of 5)

Introduction

5

Macro Generation and Conditional Assembly.
This portion of the assembler requires five
phases (with overlays) and makes four passes
over the text. The first pass inputs all
statements and partially scans the text to
construct logical statements from one or
more source statements. The second pass
performs a syntax scan of each statement

and produces a partially-edited text for
input to the third pass. The third pass
forms a global and one or more local dic-
tionaries of various symbols and macro mne-
monic operation codes. The fourth pass per-
forms the actual macro generation and
conditional assembly.

Assembly Phases. The assembly portion
(Phases 07 through DI) receives edited text
from the generator, determines the amount of
main storage to be reserved for each state-
ment, assigns locations, and completes the
symbolic assembly process. Seven or more
passes are required, additional passes being
required when the Symbol Table and/or Symbol
List Table overflow.

Functions of Major Components

Program Segment ASM (Master Root Segment) .
Resident program segment. Contains DCBs
and DECBs for SYSUT1l, SYSUT2 and SYSUT3.

Program Segment MAC (Macro Generator I/0).
This segment contains the I/0 routines used
by the macro generator phases.

Program Segment INP (Input DCBs and DECBs).
This segment contains the DCBs and DECBs
for SYSIN and SYSLIB.

Phase El1 (Initialization). Phase El per-
forms initialization for the macro gen-
erator, and determines the operating
environment by interrogating the Control
Program to determine the storage available,
I/0 devices, and I/0 channel configurations.
Phase El1 loads INP, opens the utility data
sets, input data set, and library data set,
processes parameters from the EXEC card,

and finally processes the ICTL statement,

if present.

Phase E2 (Partial Text Scan). Phase E2 reads
source statements from the input data set,
system macro definitions and COPYed text

from the library data set. The source state-
ments are written along with logical text
records and any error records. The logical

text is input to Phase E3. Some syntactic
errors are detected and error records written
as necessary. Operation codes are trans-
lated and appended to the logical text state-
ments with other control information.

Phase E3/E3A (Syntax Scan). Phase E3 scans
Icgical statements to determine their syntax
and produces partially edited text. Some
syntactic errors are detected and flagged
for subsequent error processing,

Phase E4P/E4M/E4S (Dictionary Collection).
Phase E4 reads the partially-edited text
produced in Phase E3/E3A, and uses this text
to create dictionaries containing macro mne-
monics, sequence symbols, variable symbols,
and relevant ordinary symbols for each macro
defined in the program, for the main portion
of the program, and for global information
defined in the program. These dictionaries
are used to insert pointers to Phase 5 dic-
tionaries, thus producing fully edited text.

Phase E5P/E5/ESA/ESE (Conditional Assembly
and Generation). Using the dictionaries and
fully edited text produced in Phase E4, Phase
E5 completes the dictionary entries, fully
edits the macro definitions, generates one-
for-one statements from the macro definitions
and performs conditional assembly. The out-
put from Phase E5 serves as input to Phase
07, the first assembly phase.

Root Segment RTA. Contains the system
utility unit 1/0 routines for the assembly
phases.

Phase 07/07A/07B (Literal Collection). Phase
07 collects and inserts all literals into
the program stream at the appropriate posi-
tions, converts all self-defining numbers

to their binary values, translates all sub-
stituted mnemonic operation codes created
during macro generation, and builds Symbol
List Table segments for use by Phase 08,
This table contains symbols encountered in
duplication factor and length modifier
expressions, scale or exponent modifier
expressions, EXTRN, EQU, ORG, AND CNOP
operand fields and in CSECT, DSECT, and
START name fields. If the Symbol List seg-
ment exceeds the assigned area, it overflows
onto SYSUT 3.

Phase E7I (Interlude). Phase 07I reformats
short Symbol List segments into Symbol List
Table sections for Phase 08.

Phase 08/08A/08B (Storage Assignment). Phase
08 evaluates all expressions requiring previ-
ous definition of symbols, assigns relative
storage addresses to all instructions, con-
stants, and storage areas, and creates
External Symbol Dictionary (ESD) segments.

Root Segment RTB. Contains the DCBs and
DECBs for SYSPRINT and SYSPUNCH.

Phase 09 (Build Symbol Table). Phase 09
enters all symbols found in the name fields
of the program into Symbol Table segments,
processes the TESTRAN Symbol Table (optional),
and any PUNCH or REPRO statements which pre-—
cede the first control section. It also
creates Literal Base (location) Table
segments.

Phase 09I (ESD Output). Phase 09I produces
the External Symbol Dictionary (ESD) and
writes it out on the appropriate data sets
(SYSPRINT and SYSPUNCH) . This phase also
adjusts the address values of all symbols
in the Symbol Table segments to reflect the
order of CSECTs within the assembly and
creates Literal Adjustment Table segments.

Phase 10 (Symbol Substitution). Phase 10
substitutes storage addresses for the sym-
bols used in the operand field of all
instructions, using the Symbol Table and
Literal Adjustment Table segments built in
Phase 09.

Phase 10B (Expression and Decimal Constant
Evaluation) . Phase L0B evaluates expressions
ot requiring previous definition and stores
the results in the appropriate text record.
USING, DROP, and listing control instructions
are processed. USING and listing control
records are inserted into the text stream
for use by Phases 21A and 21B.

Phase 21A (Machine Instruction Evaluation).
Phase 21A reformats storage addresses to
base-displacement format and writes them

as partially formatted text for Phase 21B.
Type D, E, F, and H constants are converted
to their binary equivalents.

Phase 21B/21C/21D (Declarative Processing
and output). This phase converts, and
evaluates, if necessary, declarative state-
ments (e.g., DC/DS) to their object form and
formats them for listing. This phase also
creates Relocation List Dictionary (RLD)
Table segments for relocatable constants
and V-type constants.

Phase PP (Post Processor). The Post
Processor phase writes the Relocation List
Dictionary (RLD) and Loader END card on
SYSPUNCH, and writes the Symbol Cross-
Reference Table on SYSPRINT if this option
is requested.

Phase DI (Diagnostic). The Diagnostic phase
Wwrites diagnostic messages and program
statistics on SYSPRINT.

Introduction 7

MACRO GENERATION AND CONDITIONAL ASSEMBLY
PHASES

The macro generation and conditional assembly
portion requires five phases (with overlays)
and makes four passes over the text. The
first pass inputs all statements and par-
tially scans the text to construct logical
statements from the one or more card source
statements. If COPY statements or system
macro instructions are detected, text is
included from the source library at the
appropriate points. The second pass per-
forms a syntax scan of each statement
and produces a partially-edited text for
input to the third pass. The third pass
collects variable symbols, sequence sym-
bols, macro mnemonic operation codes, and
ordinary symbols whose attributes are
required for conditional assembly or macro
generation (relevant ordinary symbols) and
forms a global dictionary and one or more
local dictionaries. One local dictionary
is required for the main portion of the
program for relevant ordinary symbols,
sequence symbols, and local variable sym-
bols. One local dictionary containing
sequence symbols and local variable symbols
is required for each programmer or systems
macro used.

The fourth pass performs the actual macro
generation and conditional assembly.

PROGRAM SEGMENT ASM - MASTER ROOT SEGMENT

ASM contains the DCBs and DECBs for the sys-
tem utility units SYSUT1, SYSUT2, and SYSUT3.
The routine labeled MRS performs the initial-
ization and contains the link (LINK macro)
to MAC.
ASM,
remains
process.

once loaded by the invoking program,
in core throughout the assembly

PROGRAM SEGMENT MAC - MACRO GENERATOR

I/0 PACKAGE

MAC consists of the I/O routines used by
the macro generator phases. These routines
perform the following functions: READ,
WRITE, NOTE, POINT TO READ, POINT TO WRITE,
and CHECK. The units to which these func-
tions apply are the system utilities, the
system input unit (SYSIN) and the system
library unit (SYSLIB).

The routine labeled MACGEN performs
initialization and contains the linkage to
ASM, Phase E1l, and RTA.

MAC, once loaded by ASM, is resident in
core only during the macro generation
phases of the Assembler. When the macro
generation phases are completed, control
passes (RETURN macro) to MAC which, in turn,
transfers (XCTL macro) to RTA.

PROGRAM SEGMENT INP - INPUT DCBs AND DECBs

INP consists of the DCBs and DECBs for the
system units SYSIN and SYSLIB. INP is loaded
(LOAD macro) by Phase El. INP is deleted
(DELETE macro) by Phase 2A of the macro
generator.

PHASE El1 - INITIALIZATION AND ASSIGNMENT -

CHART 01

Phase El performs initialization for the

macro generator and determines the operating
environment by interrogating the Control Pro-
gram to determine the storage available.

Phase El opens the utility data sets, input
data set, and the library data set, processes
the parameters of the EXEC card, and, finally,
processes the ICTL statement, if it is present.

Functions

The functions of this phase are designed to
perform the following:

® TInitialize for macro generation.
® Process the EXEC parameters.
® Process the ICTL parameters, if present.

Phase El begins the macro generatcr
initialization by obtaining core for COMMON,,
using the GETMAIN system macro instruction,
and initializing it. The variable uncon-
ditional mode (vu) of GETMAIN is used through-
out the Assembler to obtain core for COMMON,
certain tables, and I/O buffers.

The system utility files SYSUT1l, SYSUT2,
and SYSUT3 are initialized and opened. INP,
a table containing DCBs and DECBs pertaining
to SYSIN and SYSLIB is then brought into core
using the LOAD macro instruction. Phase E1
initializes and opens these files.

From the system input unit, SYSIN, this

phase reads the EXEC record. Its parameters
are extracted and corresponding indicators
are set within the COMMON area. (See IBM
System/360 Operating System, Programmer's
Guide, Form C28-6595 for a list and de-
scription of these parameters.) The line
count is extracted, if present, converted
to binary, and likewise stored in COMMON.

Phase El then reads the first source
record. If this record is not an ICTL
record, Phase El terminates and calls Phase
E2. TIf the first source record is an ICTL
record, its parameters are extracted and
stored in the COMMON area. Phase El then
terminates and calls Phase E2.

See Appendix D for illustrations and
descriptions of the various record formats
involved in this phase.

Routine Descriptions

BWFORC/BWRITE

This subroutine writes blocked text on
units SYSUT1 and SYSUT2, including source
text, edited text, error records, and macro
and ordinary symbol references.

E1GO

This routine performs the initialization
of COMMON, I/O indicators, etc., for Phase
El.

FINSCN

This routine tests the first record of
the source text to determine if it is an
ICTL record.

GETSRC

This subroutine reads the source state-
ments, checking for continuation records,
comments records, error records, the last
record, record sequence, and statement
format.

ISICTL

This routine processes and stores the
operands found in the ICTL record.

NOINV

This routine loads the DCBs for SYSIN and
SYSLIB, opens these files and the system
utility files.
TUNEXT

This routine executes the transfer to
Phase E2.

PHASE E2/E2A - PARTIAL TEXT SCAN -
CHARTS 02 AND 03

Phase E2 reads source statements from the
input data set, and system macro definitionsi
and COPYed text from the library data set
according to the setting of SYSIN. The
source statements are written on SYS001 for !
inclusion on SYSPRINT. A partial syntacticai
scan is made on every statement primarily for
mnemonic operation code translation and t
determination of unknown mnemonic operations:
(possible system macro). A table of unknown!
mnemonic operations is built and segments of:
this table are written on SYSUT2. The par- |
tially edited text of each statement is :
written on SYSUT1l. After all source state-
ments from the input data set have been read
and processed, control is transferred to
overlay E2A for determination of system
macro input. Unknown mnemonic operations
which are found to be system macros are then:
processed as further input to phase E2. The!
location on SYSLIB of the system macro source
is obtained using the FIND macro.

Overlay E2A reads the Macro Name Table
segments built in E2, building one complete °
table which has only one entry for each :
unigque mnemonic. This table is scanned and
all referenced and defined macros are flagget
to prevent repetitive look up of the same
macro. These macros (Subset A) are assumed
to be either IBM or user system macros and
are written on SYSUT2.

Any remaining undefined macros are collecs
ted (Subset B) and written on SYSUT2 to be
looked up by Phase E2. Phase E2 is reloaded!
and SYSLIB becomes the system input unit.

When no undefined macro mnemonics remain
in the Macro Name Table, control is trans-
ferred to Phase E3.

Functions

The functions of this phase are designed to
perform the following:

® Construct logical text statements.

® Obtain System Macro Definitions and
COPYed text from SYSLIB.

E2 reads the remainder of the source
text from SYSIN, checks it for correct
sequence according to any ISEQ statements
present, and writes it as source records on
SYSUT1 following the source text, if any,
written in Phase El. If no END record is
found, one is created upon receiving an EOD !
indication from the Operating System. If

Macro Generation and Conditional Assembly Phases 9 i

an ICTL statement is found, an END record
is created and inserted into the output
stream and the input is ended.

A Macro definition is considered to begin
with a MACRO header statement and end with
the next MEND trailer statement. All MACRO
statements in between are considered invalid
statements. If the MEND trailer for the last
valid MACRO header has not been read before
an END statement or EOD indication, one is
generated at that time.

Logical source statements, which may be
contained in one record or a record and one
or more continuation records, are collected
into a single logical statement record and
interspersed with the source text on SYSUT1.
Macro instructions and macro prototype state-
ments are exceptional in that one logical
statement record is created for each source
record. If the operation is a machine
instruction or assembler instruction, it is
encoded and appended to the logical state-
ment with other control information. If a
COPY assembler instruction is detected, the
text is located in the system library with
FIND, is edited, and then inserted into the
text stream being written on SYSUT1. TIf the
text is not located, an error record is
written on SYSUT1.

Overlay E2 builds a table of Macro opera-
tion codes, called the Macro Name Table, by
assuming that undefined mnemonic operation
codes are macro instructions. When entered
into the table, flag bits are set indicating
use or definition. A MACRO operation code
associated with a macro prototype statement
is flagged as defined. All other entries
are flagged as used.

The Subset A is read from SYSUT2, SYSLIB
is searched using FIND and System Macros
are read from the library, scanned, and
written on SYSUT1 at the end of the previous
output. If a Macro cannot be located on the
system library, the Macro Mnemonic is
assumed to be an undefined operation and in
error. If the MEND trailer label for a
System Macro definition is not read before
SYSLIB EOD is sensed, one is created at
that time.

If macro instructions are nested in Sys-
tem Macro definitions, these Macro mnemonics
are entered in Macro Name Table segments (as
described earlier) and written on SYSUT2 fol-
lowing Subsets A and B. Phase E2A is then
called again.

If Overlay E2A is called more than once,
it reads in the Subset A, Subset B, and
Macro Name Table segments and produces new
subsetted tables, overwriting on SYSUT2 any
previous output. E2 and E2A are loaded as
many times as necessary to subset the Macro
Name Table (E2A) and to locate the required
macros (E2) until all macro names are
indicated as defined.

See Appendixes D and I for illustrations
and descriptions of the various record and
table formats involved in this phase.

10

Routine Descriptions

MACLIB

This routine indicates to overlay E2 that
SYSLIB has become the input unit. It also
locates the undefined macro in the System
Library.
DRIVER

This routine checks statement syntax,
scans the name and operation fields, and
determines if the operation is a normal
symbol, machine operation, pseudo-operation,
or undefined macro.
WRTAPE

Writes source on SYSUT3.
NOPSK

Sets type of edited text.
OPOK

Test Operation field for normal symbol.

MCRINS

This routine outputs the undefined macros
onto SYSUT2.

BWFORC
See Phase El.
NDSMT3

This routine causes a branch to BWFORC
for writing on SYSUTI.

MEND

Processes the MEND statement.
END

Processes the END statement.
SY200

This routine sets SWTCH5 to indicate sys-
tem macro editing.

DCLOSE

Common closeout routine for macro defi-
nitions and mainline program.

PREGET

This routine reads in the Macro Name

Table segments from SYSUT2.
MOWR

This routine performs' the subsetting of
the Macro Name Table, separating the defined
and undefined macro names, and outputs the
undefined macro table onto SYSUT2.

FINALE

This routine checks for macros that have
not yet been defined.

WROT

This routine outputs the defined Macro
Name Table onto SYSUT2 when the end of input
is reached and returns to overlay E2.

NOMAC

This routine terminates Phase E2/E2A
when all macros have been defined, and
transfers from E2A to Phase E3.

PHASE E3/E3A - SYNTAX SCAN -
CHARTS 04 AND 05

Phase E3 reads the source logical statement
and error text from SYSUT1l. If the state-
nent is not a macro instruction or prototype,
Phase E3 proceeds to scan for syntactical
errors and creates a string language,
partially-edited text and associated dic-
tionary -collection records. Relevant
ordinary symbols are written on SYSUT3 and
all other text on SYSUT2. This is continued
until all input text has been processed, at
which point control is passed to Phase E4P.
Overlay E3A, when called, processes only
macro instructions and prototype statements.
E3A creates partially-edited text records

and special pointer and operand dictionary
collection records. Similarly relevant ordi-
nary symbols are written on SYSUT3 and all
other text on SYSUT2. Upon the completion

of the macro instruction or prototype proc-
essing control is returned to E3.

Functions
The functions of the phase are designed to
perform the following:

® Scan the logical statement text for syn-
tactical errors.

® Produce a string-language, partially-
edited text and associated dictionary
collection records.

® Build the Relevant Ordinary Symbol Table.

The macro/conditional assembly generation
dictionaries will contain entries for macro
mnemonics, variable symbols, sequence sym-
bols, and those ordinary symbols which
appear in macro-instruction operands or
whose attributes are referred to in con-
ditional assembly statements.

Phase E3 creates special pointer and
operand dictionary collection records but
no partially-edited text records for global
and local set symbol declarations (GBLx
and LCLx). These special dictionary collec-
tion records will be used in the following
dictionary collection phase to make defi-
nition entries for the associated set sym-
bols in the appropriate dictionary. Phase
E3 also collects, in standard pointer and
operand dictionary collection records, all
references to pertinent variable, sequence,
and pertinent ordinary symbols in macro
definition model statements, conditional
assembly statements, and open code state-
ments, i.e., statements outside of macro
definitions. If a symbol names a DC/DS
statement, Phase E3A collects the symbol
and evaluates and collects the type, length,:
and scale attributes of the symbol. These
standard dictionary collection records fol-
low their associated partially-edited text
records and will be used to assist in the
processing of the partially-edited text
records by the dictionary collection phase.

For macro instructions, there is one
partially-edited text record with its associ+
ated standard dictionary collection records
to describe both the name and operation
fields. 1In addition, there is one partiallys
edited text record with its associated dic-
tionary collection records to describe each
macro instruction operand.

For prototype statements, all positional
symbolic parameters are collected in special-
pointer and operand dictionary collection
records that have no associated partially-
edited text records preceding themn.

In addition, there is a partially-edited
text record with its associated standard
dictionary collection records to describe
each keyword operand.

Phase E3/E3A also collects all ordinary
symbols relevant to conditional assembly
into Relevant Ordinary Symbol Table seg-
ments which are written on SYSUT3. This
table will be used by the succeeding dic-
tionary collection phase to select those
ordinary symbols and their attributes which
are to be placed in local dictionaries.

Macro Generation and Conditional Assembly Phases 11

The source text, partially-edited text,
and error records, if any, are written on
sysuTa2.

See Appendix D for illustrations and
descriptions of the various record formats
involved in this phase.

Routine Descripticns

ASCAN

This subroutine collects the attribute
of DC/DS operands containing no variable
symbols.
BEGINZ

Initialization for Phase E3.
DC/DS

Processes DC and DS statements.

DCLOSE

Closeout routine for macro-definition
and mainline program.

DCLRTN

This routine processes global and local
declarations, building special text records
for each.
DRIVER

Initializes for a new statement.
DRV20

Scans the name field.
DRV30

Space over text to operation field.
DRV40

This routine checks for a macro instruc-
tion or a prototype statement. Overlay E3A
is loaded to process these two types.
END

Processes the END statement.

ENDOPR

Processes the end of an operand or
statement.

12

ENDSMT
Edits comments.
GETSRC

Reads source and macro statements.

GSCAN

Scans input text except operand fiel@s
significant to the macro generator calling
sequence.
INITLZ

This routine initializes overlay E3,
setting up the I/0O buffer areas, common
area, etc.
LEGOP

Performs a syntax scan of each operand
parameter.

LOOKUP

Produces output pointer.
MCHINS

Processes machine instructions,
MCRINS

This routine processes the macro
instruction.

MCRO5

Processes the output header for edited
text records.

MEND

Processes the MEND statement.
MISCAN

Processes and scans macro-instructions.
NDOPRO

This routine writes edited text on
SYSUT2.

NDSMT3

Writes output text.
NDSMT4

Skips records looking for MEND.

NOERR

Restores output pointer for start of
next record.

NTBORC

Processes prototype parameters.
NXTOPO

Initializes for prototype scan.
NXTOP1

Starts scan of new operand within proto-
type statement,

NXTOP2

Inserts positional flag and edits the
operand.

PROSCN

This routine edits the operand of a
prototype statement.

PROTO

Produces operand pointer records for
prototype statements.

PRO8

Processes prototype positional parameter.
PRSCNO

Edits profotype statement,
PSDOPR

Processes non-machine operation.
PTSBHD

Processes sublists and keyword operands.
RPUPFD

Inserts end of statement symbol into
test.

RPUPOP
Inserts end of operand symbol into text.
SUBNX1

Initializes for sublist operand.

VALDOP

Tests for machine operation or Assembler
instruction.

VARSYM

Recursive subroutine to scan variable
symbols,

PHASE E4P/E4M/E4S - DICTIONARY COLLECTION -
CHARTS 06, 07, 08, 09

Phase E4P initializes the COMMON area, I/0
buffer, and dictionaries for Phase E4M,

Phase E4M reads source records, partially-
edited text, and dictionary collection
records from SYSUT2. Source records are
immediately written on SYSUT1l, When the
start of open code is detected, the relevant
ordinary symbols are read from SYSUT3 and
entered into the General Dictionary.

At the start of a macro definition, the
input file is switched to SYsuT3. all
partially-edited records will be processed
as they are read, inserting appropriate dic#
tionary pointers. (using the pointer and
operand list records) to form an entirely
edited record. 1If processing is within a
macro, the edited record will be written on
SYSUT3, otherwise on SYSUT1. During the pro-
cessing of macros, a Macro Dictionary is V
built. The dictionary is closed and written
on SYSUT3 when the MEND statement is
encountered and overlay E4S is called to
subset the dictionary.

During the processing of open code, a
Permanent (Resident) Dictionary is built.
When the end of text is encountered,overlay
E4S is called to subset the Permanent
Dictionary.

Overlay E4S reads dictionary segments
from SYSUT3 and subsets this dictionary to
contain only information that will be
required for generation and conditional
assembly. This subset dictionary is written
on SYSUT3 and control returns to either E4M
or ES5P depending on whether the subset dic-.
tionary just written on SYSUT3 was the Gen-
eral Dictionary or the Permanent Dictionary;
respectively,

Functions

The functions of this phase are designed

Macro Generation and Conditional Assembly Phases 13

to perform the following:

® Establish the dictionaries necessary to
complete the editing of the text.

® Subset the dictionaries for use in Phase
E5P/E5/ES5A/ESE.

The following dictionaries are established:

1. One global dictionary to contain macro
mnemonics and glcbal variable symbols.,
2. One local dictionary for each macro to

contain local variable symbols and
sequence symbols, defined in the macro
definition.

3. One local dictionary for the main por-
tion of the program to contain relevant
ordinary symbols in addition to local
variable symbols and sequence symbols.

Both local dictionaries are never in core
at the same time. See Appendix D for
descriptions and illustrations of the format
of the above dictionaries.

All symbols requiring dictionary action
were collected in operand list dictionary
collection records by Phase 3. For each
macro definition, symbols are obtained, with
the help of dictionary collection pointer
records, from the associated operand list
records. Dictionary definition entries
are made in the global dictionary for the
macro mnemonic and, at the point of defini-
tion, for all global set symbols. Dictionary
definition entries are also made in the
local dictionary for all macro prototype
statement (symbolic parameter) operands,
sequence symbols, and, at the point of
definition, for all local set symbols. From
its knowledge of the entries in the current
dictionaries, Phase E4M directly calculates
the structure of the associated evaluation
dictionaries to be built in Phase 5. Using
this information, E4M enters into its dic-
tionary definition records an "a" pointer
which peoints to the location within the
comparable Phase 5 dictionary which will
contain the appropriate evaluation infor-
mation for the term.

Each macro prototype operand was assigned
by Phase 3 a position number which reflects
the order in which the operand appears within
the prototype statement. This number is
placed in a symbolic parameter definition
entry instead of the "a" pointer. In Phase
5, this position number will be used to locate
the required macro instruction operand that
will replace the symbolic parameter wherever
it is used. When a sequence symbol appears
in the name field of a statement, it is
entered in the local dictionary, its edited
text is outputted, and the NOTEd location
of this text is placed in the local diction-
ary entry for this sequence symbol in the
space reserved.

14

During the dictionary processing, semantic
errors (e.g., duplicate definitions of vari-
able symbols) are detected and appropriate
error action taken.

After processing, pointer and operand
list records are dropped from Phase 4 output.
The edited text of comments not for genera-
tion (e.g., .*) are not written on SYSUT3
and thus will not be generated.

These definition entries occur before the
terms are referenced in macro instructions,
model statements, or conditional assembly
SETx, AIF, AGO, or ANOP statements. When a
term defined in the dictionary is referenced,
overlay E4M looks up the symbol in the dic-
tionaries. When located in the proper
dictionary, the "a" pointer or symbolic
parameter location number, whichever is
appropriate, is placed, with the help of
the associated pointer record, in the
partially-edited text record in the field
reserved by Phase E3/E3A for such an entry.

The procedure for entering or locating
an entry in a macro dictionary is described
in Appendix D. Dictionary segments may
overflow onto SYSUT3. The dictionary
entries are backwards chained, so that recent
entries are more likely to be in main storage.
It may be necessary, however, to write the
current segment on SYSUT3 and re-cycle
previously written dictionary segments from
SYSUT3 back into main storage. This re-
cycling of dictionary segments is less fre-
guent in large storage environments where
more main storage can be made available for
the dictionaries. When the MEND instruction
trailer record is sensed, the local macro
dictionary is closed out and control is
transferred to overlay E4S which subsets the
local dictionary segments. The NOTEd pos-
ition of the macro definition fully-edited
text is obtained from the macro mnemonic
entry in the global dictionary and placed
along with the current ACTR value in a
header record attached to the first segment
of the subsetted dictionary. The subsetted
dictionary is then written on SYSUT3, its
location NOTEd and entered in the macro
mnemonic entry in the global dictionary.

When the open code flag record is read,
the Relevant Ordinary Symbol Table segments
are read in and the symbols hashed and
entered in the (open code) local dictionary.
Dictionary definition entries are made as
before. When dictionary entries are refer-
enced, "a" poi.ters are placed as before in
the appropriate reserved fields in the
partially-edited text that are pointed to
by the associated dictionary collection
pointer records. Whenever an ordinary sym-
bol in the name field of a statement is
encountered, it is looked up in the local
dictionary. If an entry for this symbol is
not found, this indicates that it is not a
"relevant" ordinary symbol. If an entry is
present, and represents the name of a DC/DS

statement, the attributes of the DC/DS name
are already included in the entry. If attri-
butes are not present in an entry, overlay
E4M calculates the attributes and makes a
second entry which contains the symbol
attributes in the dictionary for this
symbol.

The operand list records are processed
as before for references to dictionary
entries. The acquired "a" pointer, as before
is placed in the proper field of the
partially-edited text statement in the pos-
ition pointed to by the appropriate operator
list entry within the associated dictionary
collection record. The now fully-edited
text is outputted on SYSUT1 along with the
interspersed source and error records. When
the END assembler instruction is encountered,
the local dictionary is closed out, as before,
control is transferred to overlay E4S and the
open code local dictionary is subsetted. The
subsetted dictionary is outputted, as before.
The location of the subsetted dictionary is
NOTEd and the information is saved in COMMON.

The global dictionary is subsetted at the
end of the phase, outputted on SYSUT3, and
control is transferred directly to Phase E5P.

If overlay E4S is unable to completely
subset the dictionary segments, output by
overlay E4M, into the allotted areas, it takes
the following action:

1. If a subsetted local macro dictionary
overflows, it writes an error record
on SYSUT3, NOTEs the position of this
error record, and places this NOTEd
value in the global dictionary macro
mnemonic entry instead of the location
of the partially subsetted dictionary.
Control is returned to overlay E4M.

2. If the subsetted global or open code
local dictionary overflows, overlay E4S
writes an error record on SYSUT1l and
copies source and error records, but
not partially-edited text, onto SYSUT1
until the end of the file is reached.
It then places an abort program code
in general register 3, XCTLs to phase
E4M which will XCTL to Phase ES5P.

The formats of all records -processed in
this phase are described in Appendix D.

Routine Descriptions

ASGN2

Initialize origins for I/0 buffers,
directories, and hash tables.

CLRHT

Sets phase entrance code to first entry.
DCLOSE

General Dictionary closeout routine.
DCL3

Writes last dictionary segment.
DCL4

Writes next-to-last dictionary segment.
DCL6

End of text routine.

DCL8

Sets global declarations inactive and
resets transient area pointers.

E4M

Phase closing routine.
E4SGO

Determines whether global or local entry.
FREECR

Frees the main storage area used for
subsetting.

GETCOR
Gets main storage area for subsetting.
KASYB

Writes error record and abort flag.

MOCSUB
End of open code test.
MoC2
Sets end of open code flag.
MV4
Sets new common area base register.
NXTGRP

Tests for end of macro or open code.

Macro Generation and Conditional Assembly Phases 15

PIVOT

Sets temporary common area base register
to value of SYSREG.

RTRFIL

Reads the first dictionary statement
from SYSUT3.

RZE17

Checks for operand list record.
RZE19

Writes edited test record.
RZE26

Processes operands for dictionary entries.
ROA

Clears out open code buffers.
ROD

Writes out error records.

RO5

Processes macro instruction record.
R16
Processes global and local declarations.
SBSET1
Subset dictionary routine.
SSPGD
Subsets the Permanent Dictionary.
SSRTN
Tests if within open code.
SSTGD

Subsets the transient General Dictionary.

TSBERR

Stores the dictionary size in the diction-
ary header.

TSBSET

Subsets local dictionaries.

16

TSBST1
Reads all but the first segment.

TSBST2
Calls the subsetting routine.
TSBST3

Writes subsequent blocks of dictionary
on SYSUT3.

TSBST4

Tests for open code dictionary.
TSBSTS

Saves next NOTE position of SYSUT3.
TSBST7

Saves open code NOTE/POINT address.
WSSFIL

Writes subset dictionaries on SYSUT3.

PHASE E5P/E5/ES5A/ES5E CONDITIONAL ASSEMBLY
AND MACRO GENERATION ~- CHARTS 10, 11, 12,
13, 14

Phase ES5P requests a variable amount of
main storage up to a maximum for diction-
aries and I/0 buffers. If an abnormal ter-
mination of assembly is requested, E5P
calls E5E. E5P then reads the mainline
global and local dictionaries from SYSUT3
and initializes them for E5. Control is
then passed to E5.

Phase E5 reads text from SYSUT1l. This
text includes source, error and edited
records. Source records are immediately
written onto SYSUT2. When a macro instruc-
tion is encountered, control is transferred
to overlay E5A. All other statements are
processed for substitution, generation and
conditional assembly by E5. Assembler
edited text records are produced and writ-
ten on SYSUT2. When the end of text is
reached, control is transferred to Phase
07 via MAC and RTA.

Overlay ES5A reads the macro dictionary
from SYSUT3 and then the edited prototype
statement for SYSUT3. A parameter table
is built using the macro instruction and
edited prototype statement. The input text
file for E5 is changed to SYSUT3 for edited

text of the macro-instruction. Control is
returned to E5.

Overlay ES5E is called when
dition arises in E5. Text is
SYSUT1. All source and error records are
written on SYSUT2. All other records are
bypassed. When the end of text is en-
countered, its source and associated error
records are written on SYSUT2 and control
is passed to Phase 07 via MAC and RTA.

an abort con-
read from

Functions

The records that are read from SYSUT1 for
this phase are source, error, and fully-
edited text. Subsetted local and global
dictionaries and macro definition edited
text and associated error records, if any,
are read from SYSUT3. The records that are
written on SYSUT2 from this phase are source,
error, and assembler edited text.

The functions of this phase are designed
to:

e Initialize the phase.

e Take appropriate action if abnormal ter-
mination of the Assembly is necessary.

® Evaluate conditional assembly expressions.
® Perform conditional assembly.

® Generate a parameter table from a macro
instruction - macro prototype pair of
statements (refer to Appendix N).

® Generate assembler statements using macro
definition edited text and the information
in the global and associated local
dictionary.

Overlay E5 reads the open code local dic-
tionary into main storage immediately follow-
ing the global dictionary and updates an
available storage pointer to point to the
next unused location in the block of main
storage obtained by Phase E5P. Overlay ES5
then evaluates conditional assembly expres-
sions (Charts AA, AB, AC). If the expres-
sion was in a SETx statement, the "a"
pointer associated with the set variable
symbol is used to place the current set
symbol value in its dictionary definition
entry. When an AGO or AIF instruction is
encountered and the evaluation, (if one is
necessary), indicates that a branch must
be taken, the NOTEd position of the fully-
edited text named by the sequence symbol
is obtained from the appropriate local

dictionary. The text on SYSUT1l or SYSUT3
is re-positioned and the appropriate text
is read in and processed.

When a macro instruction is encountered,
overlay E5 NOTEs its exact location on the
input file and whether the input file is
SYSUT1 (for outer macro-instructions) or
SYSUT3 (for inner macro instructions).
Overlay E5 then makes a complete pass over
the macro instruction text. Source and error
records associated with the macro instruction
are written on SYSUT2. When the End-of-
Macro Instruction record is encountered,
overlay E5 NOTEs the position where the
reading of text was discontinued so that the.
input of text can later be resumed at the
correct position. The appropriate utility
data set is then re-positioned again at the
beginning of the macro instruction text
and control is transferred to overlay 5A.

Overlay 5A uses the "a" pointer associ-
ated with the macro instruction to inspect
the associated macro mnemonic entry in the
global dictionary. This entry contains a
field which designates the location of the
associated subsetted local macro dictionary
on SYSUT3. If the entry is zero, this
indicates that this macro mnemonic repre-
sents an undefined operation to the macro
generator. If the entry field is not zero,
overlay E5A reads in the first record of the
subsetted local dictionary. This contains
a dictionary header record which indicates
the size of this local dictionary. TIf there.
is room available in the block of main storage
acquired by Phase E5P, the complete local
dictionary is brought into main storage and
the available storage pointer is updated by
the length of this local dictionary. The
parameter table will be constructed at this
location. This table (Appendix M) indicates
the values to be substituted for macro protos
type symbolic parameters when they are ref-
erenced in model statements or inner macro
instructions. Entries are made for the
first two parameters (& SYSNDX and &

SYSECT). Then the NOTEd location of the
pertinent macro definition prototype state-
ment edited text is obtained from the local
dictionary header record, the prototype
edited text is read in and the parameter
table is completed. For positional param-
eters, the values of the inner macro
instruction operands are obtained from the
appropriate dictionary, and for outer macro
instruction operands they are obtained from .
the operand itself. Entries are sequentially
made in the parameter table. As each proto-
type statement keyword is encountered, it

is compared against each macro instruction
keyword operand until a match is found.

The values are then entered in the parameter

Macro Generation and Conditional Assembly Phases 17

table. The cycles of comparisons to find
the matching macro instruction operand cor-
responding to the next sequential prototype
keyword begin where the last cycle left off;
the operands being compared in a "wraparound"
fashion. Because the entries in the param-
eter table are variable length entries, in
position number (parameter) order, a separ-
ate length table with a two-byte entry for
each parameter table entry is maintained.
Each two-byte entry contains the length of
its associated parameter table entry and

thus can be used to locate its associated
parameter table entry.

After the parameter table is completed,
overlay E5A reads in the rest of the macro
definition fully-edited text. Conditional
assembly evaluation is performed as required,
substitutions are made for references to
symbolic parameters and system variable sym-
bols, and the macro definition is expanded,
producing assembler-edited text records for
input to the assembler phases. If an inner
macro instruction is encountered, the length
table is placed behind the parameter table,
and the entire cycle is repeated. Nesting
of macro instructions can occur to any depth,
provided there is sufficient room left in
the block of main storage obtained by Phase
E5P to enter the local dictionary associated
with the inner macro instruction. If there
is not sufficient room left, this informa-
tion is noted for diagnostic purposes, the
concerned local dictionary is not brought
into main storage, further (deeper) nesting
of macro instructions is discontinued, the
input data set (SYSUT3) is NOTEd. Discon-
tinued text of the next outer level macro
is continued from where it left off.

When the ACTR value 1is exceeded within a
macro expansion, the information is noted
for diagnostic purposes, control is returned
to the outermost macro instruction expansion,
and processing continues. If the ACTR value
is exceeded in open code processing, the
information is noted for diagnostic purposes,
an END assembler instruction record is cre-
ated and inserted in the text stream on
SYSUT2, and input is ended.

Whenever the processing of a macro def-
inition is completed, generation of output
text is resumed for the next higher level
macro instruction or, if the outermost
macro definition expansion has been com-
pleted, processing of open code fully-edited
text is continued. After completely proces-
sing the fully-edited text input from
SYSUT1l, control is transferred to the first
assembler Phase 07/07A/07B via MAC and RTA.

If abnormal termination is requested
by Phase 4, Phase E5P calls overlay 5E
instead of overlay E5. In this case, all
text on SYSUT1 will be read, and only source
records with accompanying error records will
be written on SYSUT2 for input. to the
assembler phases.

18

Routine Descriptions - Charts 10, 11, 12,
13, 14

AGOST
Sets up to read at sequence symbol.
AIFST

Process AIF, and AGO statements.
Branches to GOVAL to evaluate AIF expression.

BEGMAC

Sets up for building the Parameter Table.
Reads in the Macro Dictionary (all segments)
and initializes the Parameter Table with
SYSNDX, SYSECT, and stores the macro in-
struction.

CALL

Return to overlay ES.
CSECT

Processes CSECT, DSECT, START, and
COMMON statements. Branches to evaluate
the name field if necessary.
ENDMI

Processes the end of the macro instruc-
tion record. It is used only on the pre-
liminary pass to write source record and
note the discontinued text.
ENDST

Branches to write the buffers on SYSUT2,
services the utility files, and releases the
main storage obtained for the General Dic-
tionary, buffer areas, and COMMON area.

ESE

Passes control to overlay ES5E.
MENDST

Processes MEND and MEXIT statements.
MINSTR

Performs a preliminary pass through
macro-instructions to output source.

PHASE®6

Initializes for E5 by restoring registers
and checks for any errors. If entry is made
from a subphase, and errors occurred in the
subphase, appropriate action is taken.

PROTO

Reads in a prototype statement and
NOTEs the prototype segment for the next
prototype read. Checks for erroneous pro-
totype.

PROTO1

Scans the prototype and macro instruction
simultaneously determining the positional
parameters to be entered into the table, and
selects keywords to be entered in the table.

SETST

Processes SET statement. Branches to
GOVAL to evaluate subscripted name, and to
evaluate the operand.

SOURCE

Processes compressed source and error
statements.

START6

Initializes for the phase by branching
to read the input record, storing the begin-
ning address of the record, getting the
statement type and storing the statement
flag.
a table of DC statements labeled STTYPE and
the statement type from the input record.
STTYPE

Computes GO TO for statement type.
USEBAS

Sets up main storage for E5 I/O buffers,
COMMON area, and dictionaries.

Routine Descriptions - Charts AA, AB, AC

ADD

Performs addition.
ADVINP

Advances the input pointer.
ADVOP

Advances the operation pointer.

A computed GO TO is developed by using

ARITOP

Processes arithmetic operators.
ATTPAR

Obtains attribute of a parameter.
BEGSUB

Processes substring expressions using
the VALUAT routine for evaluation.

CHARST
Stores a character string.
CHFORC

Checks operator for parenthesis and the
end of the expression.

CONTIN

Stores the product.
CRE

Updates pointer for intermediate results.
CsD

Processes a decimal integer or a charac-
ter self-defining value.

DECINT

Processes decimal integers and character
self-defining value.

DECINT

Processes decimal integers and character
self-defining values.

DIV
Divide routine.
DOOPR

Performs the function of the operator
forced in the table.

DOOPR1

Tests for arithmetic relational or
logical operator.

Macro Generation and Conditional Assembly Phases 19

FORCE

Tests if the operator forces the last
operator in the stack.

GETVAL

Gets the value from the Parameter Table.

IATTBT

Makes the integer attribute available to
the program.

INCPTR

Advances the pointer list and the GTLIST
pointer for the next entry, sets GT to zero,
and stores the pointer to GT in PTRLST.
LATTBT

Makes the length attribute available to
the program.

META
Processes a SETA variable.
METAL
Converts to decimal.
META2
Advances pointers during SETA processing.
META3

Tests for character relational expression
in SETC.

METB
Processes a SETB variable.
METB4

Tests for character relational expression
in SETB.

METC

Processes a SETC variable.
METC4

Gets length of SETC variable symbol.
METINT

Initialize for dimensioned and undi-
mensioned SET symbols.

20

MULTY
Multiplication routine.

NATTBT

Processes an N attribute.
NOTOPR

Creates computed GO TO for the approp-
riate value routine using a table labeled
EVALBR.
PACK3

Stores addition result in pointer list.
PARMTR

Process parameter.
RELAT

Process relational operators EQ,NE,GT,
LT,GE,LE.

SATTBT

Gets scale attribute.
SBEND

Processes the closing parenthesis of
an expression and a comma between
expressions.
SETA

Processes a SETA statement.

SETARE

Processes a substring left parenthesis
and an A.R.E. flag.

SETB
Processes a SETB statement.
SETC

Processes a SETC statement.

SUBSC
Processes subscripted SET variables.
SUBTR

Subtraction routine.

SYMBL

Checks for parenthesis and end of
expression.

SYSLST

Processes SYSLST.

TATTBT

Makes the type attribute available to
the program.

TSTOP1

Determines if this operator has higher
priority than operators in the operator
list.

Macro Generation and Conditional Assembly Phases

21

ASSEMBLY PHASES

The Assembly portion (Phases 07 through DI) ™
receives edited text from the generator,
determines the amount of main storage to be
reserved for each statement, assigns loca-
tions, evaluates expressions and constants,

and completes the symbolic assembly process.
Seven or more passes are required, additional e
passes being required when the Symbol Table
and/or Symbol List Table overflow.

Convert any mnemonic operation codes that
have not been processed, i.e., those
created during macro generation or condi-
tional assembly, to their hexadecimal
equivalents.

Collect all literals in a table according
to four categories of total object length.

® Scan the appropriate category of the 1lit-
eral table for a previous definition of
the same literal.
PROGRAM SEGMENT RTA
e When a LTORG or END assembler instruction
is encountered, convert all previously
collected literals to DC format and insert
them into the text stream on SYSUTI.

RTA contains the I/O routines used by the
assembly phases for the system utility units.
These routines perform the following functions
READ, WRITE, SEEK, POINT TO READ, POINT TO ®
WRITE, CHECK, and NOTE.

The routine labeled RTSEGA performs the
initialization for this phase and contains
the link (LINK macro) to Phase 07.

Convert all self-defining terms to their
binary equivalents during a general scan,
and insert them in the text statement,
which is written on SYSUTIL.

When loaded, RTA overlays MAC and e Scan the operand field of the text state-
remains resident in core during the assembly ments for symbols requiring previous defi-
phases. nition and enter those found in the Symbol

List Table segment.

e Create dummy CSECT, ORG, LTORG text records
when the END assembly record is read, to
force the proper assignment of any literals
to the first control section.

PHASE 07/07A07B - LITERAL COLLECTION
CHARTS 15 and 16

Phase 07/07A/07B adds work buckets, as
required, to the input records, converts
all self-defining numbers to their binary
values, translates all substituted mnemonic
operation codes created during the macro
generation phase, builds Symbol List Table
segments for use by Phase 8 and collects

This phase attaches at least one work
bucket to each edited record. Records may be
broken before or between buckets. However,
each work bucket occupies contiguous storage.
The work buckets (Appendix E) which may be
attached to the records are:

and inserts all literals into the program 1. Statement (type 3)
stream at the appropriate positions. 2. Operator/Delimiter (type B)
The input for this phase is from SYSUT2. 3. Length Symbol (type C)
Text statements with their appended work: 4. Self-defining term (type D)
buckets are written on SYSUT1l. Symbol Table 5. Ordinary Symbol (type E)

List segments are written on SYSUT3 along 6.
with any Literal Table overflow. Any op- 7.
codes generated in Phase E5 are looked up
and replaced with the corresponding internal
translation.

Literal (type F)
DC/DS Operand (type G)

Every edited statement has at least a
type A work bucket attached. Each machine

On completion of this phase, control is
transferred to Phase 07I.

Functions

The functions of this phase are designed to:

® Add work buckets to the input records so
that the size of the records will not be
changed when the statement is evaluated
in later phases.

22

operation has as many types B through F
buckets attached as required to duplicate
the operand field. . Each DC/DS statement

has one type G bucket per operand. Each
type G bucket is followed by types B through
E as needed for duplication factors, length,
scale or exponent modifiers, and/or address
constant expressions.

To create the Literal Table (Appendix I),
this phase scans the operand field of the
statements for literals, collects each 1lit-
eral and enters it into the Literal Table
segment according to the total object length

of the literal (including duplication and
multiple constants). This segment is divided
into four strings. These strings represent
four categories of total object lengths
(divisible by 8, and for odd multiples of 4,
2 and 1 byte). When a segment is full, it is
written on the overflow file SYSUT3.
Before a literal is entered into the

segment (Figure 5), the appropriate string
of the segment is scanned for a previous
definition of the same literal. When there
is more than one Literal Table segment, the
current segment in main storage is scanned,
written out on the overflow file SYSUT3, and
the other segments are read in one at a time
and scanned until a duplicate is found or
until all segments have been scanned. The
current segment is finally brought back into
main storage to be completed. If a duplicate
is found the literal is not collected.

In every case, a pointer representing the

string in which the literal (or its duplicate)

was entered and its displacement within that
string (i.e., the sum of the total object

lengths of all previous entries in that string)

is appended to the text statement. This
locater information is used in a later phase
to determine the address of the literal.

All previously collected literals are
converted to DC format (Appendix D) when a
LTORG or END assembler instruction is
encountered. The literals are extracted
from the Literal Table segments by strings
in the order of the four categories
(8-4-2-1) and are inserted into the text
stream which is on SYSUTI.

Figure 5 is an example of the steps
involved in building the Literal Table
segments.

Routine Descriptions

FINTST

Checks for final literals, then writes
them out with a dummy CSECT, ORG, or LTORG.

GETEXT

This subroutine is common to all assembly
phases of this program. It is called to
retrieve the next logical record from the
input buffer and store it in the output
buffer.

Literals from the following statements are in the table
MVC A(12), = 3F'1

AD 2, = D'I"
D 3, = 2F'1, 2
IC 2, = XLI'N

The next literal collected is = XL4'12
. Search chain starting at .

. Place in .
. Add total object length of literal (4 bytes) to © .
. Place literal in table.

Update pointer @ to 86

G hwN -

10°

POINTER IN CORE to next available location in Literal Table
2 bytes

@ «— |nitial value was 22, (start of LIST)

LITERAL TABLE (Appendix 1)

Bytes © L;;aﬁon
1 1 2 3 2 3 2 3 2 3 10
L P & [”wIOI I” L Just

L’ TOL 1 byte chain
P0|n0er to 1 byte chain
TOL 2 byte chain

"Pomfer to 2 byte chain

TOL 4 byte chain
Pointer to 4 byte chain
TOL 8 byte chain
Pointer to 8 byte chain
Segment Number

TOL = Total object length
of literals in chain.

Literal Table ID
Location LIST
22, 34,
T T T T
| ot 0 | w-rl o+ o ! 04'1
L 1
12 bytes 11 bytes
LG I
Vo120 H H
H 10§ F1,2 o 1 o .xu-vl
L 1 1
7210 14 bytes 13 bytes
L) 1
I o ! Py XL4'I£T]
i 4
14 bytes

Figure 5. Building the Literal Table

LITORG

Process the literals at the END assembly
indication.

MAIN12
Start of ovérlay 07A.
MAIN1S

Branch out according to type of instruc-
tion.

Assembly Phases 23

MARKCF

Marks the location for adjustment of the
moved record.

OBM - Output Buffer Management

This subroutine is common to all input/
output routines in the assembly phases of
this program. When OBM is entered, the RLI
is in register GRO and upon exit, register
GR2 contains OCT+4 words (Output Control
Table). The return register is GRX.
OPSCAN

Scans the Operand field for literals.
PHCD

Switches read and write data sets.
PHCG

Exchanges read and write buffers.

PHCLS

This subroutine closes Phase 07/07A/07B.

It includes logic to determine the amount of
main storage to free and which phase to call.

PHC2

Determines if this is the first Symbol
List segment.

PHSIN

This is the initialization routine for
this phase. It includes routines to set
pointers for the Symbol List segment in I/0
Parameter Table and Resident Control Table
(RCT) input buffers and buffer management,

RELREC

This subroutine is common to all of the
assembly phases of this program and is
called to release a record from the input
buffer.
SDVCF

Converts self-defining values or scans
the non-address type constants.

SLNAME
Puts name in the Symbol List.
SYLIST

Enters the symbol in the Symbol List
Table segment.

TXTCF

This is the main routine for processing
the statements in this phase. The routines
included are:

LITORG

OPSCAN

PTWBCF

SDVCF

SYLIST
WRTEXT

Writes text and error records.

PHASE 071 - BUILD SYMBOL LIST TABLE -

and first output buffer and buffer management. CHART 17

It also determines the length of the Literal
Table and sets table pointers. Sets the
utility I/O unit DCBs in RCT and R/W DECBs.

PTWBCF
Adds work buckets to the record.
PUTREC

This subroutine is common to all of the
assembly phases of this program. It is
called to retrieve a logical error record
and store it in the text output buffer. For
this phase it is also used to output the
three dummy records (CSECT, ORG, LTORG)
created when the END assembly record is
encountered.

24

Phase 07I is called Interlude since it is
not an overlay and it does not pass text.
Interlude builds the Symbol List Table ‘'in
sections from Symbol List Table segments
which were output from Phase 07/07A/07B.
The Symbol List Table is used by Phase 08.

Input for this phase comes from SYSUT3
and consists of Symbol Table segments. The
Symbol List Table sections are written on
SYSUT3.

The volume of Symbol List Table segments
may cause Interlude to build a number of
Symbol List Table sections. Duplicate
occurrences of symbols within one Symbol
List Table section are eliminated.

On completion of this phase, control

is transferred to Phase 08/08A/08B.

Functions
® Read the Symbol List Table segments
(1,000 bytes) from overflow file SYSUTL.

® Build Symbol List Table sections
(3,000 bytes).

® Write filled Symbol List Table sections
back on SYSUT3.

Routine Descriptions

PHCLS

Phase closing routine which includes
transferring control to Phase 08.

PHSIN
Initialization routine.
PLUGCF

Clears the main storage area reserved
for building the Symbol List Table section.

RDSLS

Reads the Symbol List Table segments
from SYSUT3.

SYL10

Links to the subroutine to read the
Symbol List Table segment.

SYL13

Gets the symbol count and sets the
symbol pointer.

SYL1S

Hashes the symbol and gets the hash
entry contents.

SYL20
Compares the entry in the chain with the

hashed symbol. Duplicates are not entered
in the chain again.

SYL25
Tests for the end of a chain or the

absence of a chain. Enters the symbol in
the next available storage position and

sets the chain pointer and hash entry.
Increments the section symbol count. If the
section is full, it is written and the area
is cleared.

SYL30

Reduces the segment symbol count after a
symbol has been entered in the chain or its
duplicate found.

SYL35

Increments the total symbol count. If a
partially processed section remains, the
routine increments the section symbol count
and moves it to the section, writes the
section on SYSUT3, and branches to call
Phase 08.

WTSLT

Writes a filled Symbol List Table section
on SYSUT3.

PHASE 08/08A/08B - STORAGE ASSIGNMENT
CHART 18

Phase 08/08A/08B evaluates all expressions
requiring previous definition of symbols,
assigns storage addresses to all instruc-
tions, constants, and storage areas, and
creates External Symbol Dictionary (ESD)
segment(s) .

The input for this phase for the first,
or only, pass is SYSUT2. Text is written
on SYSUT1l. Symbol List Table sections and
External Symbol Dictionary segments are
written on SYSUT3. S8YSUT2 and SYSUT1
alternate functions on succeeding passes,
if any.

On completion of this phase, control is
transferred to RTB.

Functions

The functions of this phase are designed to
perform the following:

® Assign relative storage addresses to all
instructions, constants, and areas.

e Evaluate all expressions requiring previ-
ous definition of symbols.

® Make entries to the External Symbol Dic-
tionary for symbols in the operand fields
of ENTRY and EXTRN statements, V-type
address constants, each named control
section and dummy control section, blank
common, and for an unnamed control sec-

Assembly Phases 25

tion and dummy section, if present.
The following factors enter into the stor-
age address assignment function:

® Control section.

® Statement object length and programmed
location counter adjustment (ORG, CNOP).

e Boundary alignment.

For the first appearance of each control
section, Phase 08 establishes a location
counter starting at zero, and records the
control section name, number and current
length in an ESD table segment (see Appendix
I). For a named CSECT, START or DSECT,
the Symbol List Table is scanned to deter-
mine whether a new section has been requested
or a previous one resumed. If it is a
resumption, the location (within the ESD
table), of the previously established ESD
record for this control section, is calculated
and the current value of the location counter
for this control section is obtained. The
location of an ESD record for Private Code,
blank common, or unnamed DSECT is calculated
from information held in core storage. ESD
processing is on a Demand-overlay basis
(overlay E8B), with ESD segments written on
SYSUT3 overflow data set. If a needed ESD
segment is not in main storage, the current
segment is rolled-out (written) on SYSUT3
and the previous segment brought in.

The object length of machine instruction
statements is determined from the actual
operation code. The object length of
declarative statements (e.g., DC) depends on
the constant type, length, and, if present,
duplication factor and length modifier
expressions. Symbols used in these expres-
sions, in scaling and exponent modifier
expressions, or in the operand fields of
ORG, CNOP, START, or EQU statements must
have been previously defined. These expres-
sions are evaluated by overlay 08A and the
evaluations placed in the proper work bucket.
Expressions in the operand field of ORG state-
ments are evaluated and the current location
counter field in the proper ESD record is
updated.

Boundary alignment of statements is done
on the basis of statement (or constant) type,
or, in the case of CNOP, based on the evalu-
ation of the operand field. Information
about bytes skipped for alignment is carried
in the proper work bucket.

In evaluating expressions, searching the
Symbol List Table is said to be done in one
of three modes:

® Normal mode
® Iterate mode

® Re-iterate mode

26

The conditions associated with each are
as follows:

Normal Mode: The statement name entry, if
any, is looked up in the current Symbol List
Table section. If the name is found, its
attributes are attached to the table entry.
All name entries are checked for validity

on the first pass over the text. When an
expression contains a symbol requiring
previous definition, the current Symbol List
Table section is searched and the associated
length and value attributes are placed in the
proper work bucket. When the value of all
Symbols in each expression of a statement
have been found, the expression(s) are eval-
uated, the length of the statement is deter-
mined, and the length and value attributes
are attached to the work buckets. The loca-
tion counter for the current segment is
advanced by the total length of the state-
ment.

Iterate Mode: If a symbol in the operand
field of a statement is not in the Symbol
List Table, the Symbol List Indicator (SLI)
for the statement being processed is set.
From this point, the remainder of the text
is processed, values are substituted in the
proper work bucket for symbols found in the
Symbol List Table section, but expressions
are not evaluated.

Re-iterate Mode: Input is initially from
SYSUTZ2 and the entire data set is passed as
output to SYSUTl. When a logical end-of-
data is encountered, the text data sets are
re-positioned at the beginning of text and
SYSUT2 and SYSUT1 switch functions (i.e.,
SYSUT 1 becomes input and SYSUT2 becomes
output). The next Symbol List Table section
is read and searched for the name that could
not be found in the previous table section(s).
If the name is found, its attributes are
attached to the table entry. Evaluation,
length determination, location counter
advancement, and table updating continue
until another symbol cannot be found, at
which time the above process is repezted.
Thus the entire text is passed for each Sym-
bol List Table section searched.

if, for any reason, an expression cannot
be evaluated, an entry is made in an error
record associated with the statement. The
current location counter field in the ESD
entry is not updated for that statement.

When entering symbols from the operand
field of ENTRY, EXTRN, and V-type constant
statements into the ESD table, ENTRY symbols
are entered each time they are encountered;
no check is made at this time for duplication.
However, only one entry in the ESD Table is
made for EXTRN and V-type constant state-
ments. Should the same symbol appear in

both an EXTRN and a V-type constant state-
ment, the ESD Table entry is an EXTRN. If
a DSECT is encountered with the same name
as a previously encountered CSECT, it is
entered as an unnamed (illegal) DSECT. If
a CSECT is encountered with the same name
as a previously encountered DSECT, it is
treated as a private code (i.e. unnamed)
control section.

A maximum of 255 entries may be made in
the ESD Table (excluding symbols appearing
in the operand field of ENTRY statements).
Entries in excess of the 255 maximum (except
for ENTRY) are flagged as errors and not
entered in the table.

Routine Descriptions

MAINI1O

Reads the next record and initializes
the statement.

MAIN12

Exit from Phase 08.
MAIN15

Reads the next Symbol List segment.
MATIN20

Determines the process type.

Tests the record read by routine MAIN10
to determine whether it is to be bypassed
or processed. If it is to be processed, it
is further tested to determine whether it
contains an assembler operation code or a
machine instruction. If the statement con-
tains an assembler operation code, exit to
MAIN50. If the statement contains a machine
instruction and Normal Mode is set, the
operation code is checked to determine its
format (RR, RX, SI, SS).

MAIN40

Advances the location counter. If the
statement contains a name, a length attribute
is formed and placed in the statement work
bucket.

MAIN45

Exits to NAMECF to look up statement name
in the Symbol List Table and, if the table
entry is incomplete, inserts the missing
information (length attribute, ESD-ID,
value attribute, adjective code).

MAIN50

Enter from MAIN20 if the statement con-
tains an assembler operation code, if this
operation is Hexadecimal 16 or greater, the
actual operation code is determined and a
branch occurs to the appropriate subroutine.
Assembler operation codes below Hexadecimal
16 are bypassed.

PHCLS

Phase closing routine. Closes text data
set, frees main.storage, and transfers
control to RTB.

PHSIN
Entry point to Phase 08. Performs
initialization.

PROGRAM SEGMENT RTB

RTB contains the DCBs and DECBs for the
system output units SYSPRINT and SYSPUNCH.
The routine labeled RTSEGB performs the
initialization for this phase and contains
the link (LINK macro) to Phase 09.

RTB, once loaded following Phase 08,
remains resident through the remainder of
the assembly phases. The routines using
the DCBs and DECBs contained in RTB are
incorporated in those phases performing
output functions.

PHASE 09 - BUILD SYMBOL TABLE - CHART 19

Phase 09 reads the text from SYSUT2 or
SYSUT 1. Each symbol from the name field of

a statement is entered in a symbol table,
together with its value and other attributes.
A masking formula is applied to a symbol to
obtain an entry point in a pointer table.
This table contains a pointer to the symbol
table, where all symbols are entered
sequentially. Overflow of the symbol table
is written on SYSUT3., PUNCH and REPRO
statements preceding the first control sec-
tion are processed by this phase. This phase
punches symbol cards for later use by TESTRAN.

Functions

The input for this phase if from SYSUT2 or
SYSUT1 depending on the number of passes

made of the text statements during Phase 08.
The format of these input records is described
and illustrated in Appendix D. The functions

Assembly Phases 27

of this phase are designed to:

e OPEN SYSPRINT and/or SYSPUNCH if the LIST
and/or DECK or LOAD options are selected.

e Process and write on SYSPUNCH the data
from all PUNCH or REPRO assembler instruc-
tions appearing before the first control
section.

e Build Symbol Table segment(s).

e If the number of Symbol Table segments
is greater than one, all segments are
written on the overflow file SYSUT3.
Otherwise, it remains in main storage.

e Optionally writes the TESTRAN Symbol Table
on SYSPUNCH (Appendix I).

e Builds a Literal Base Table in segments.
The table contains locater information for
Phase 09I to use in developing a table of
assembled addresses for the beginning of
each literal pool and its strings.

e Writes the Literal Base Table segments on
SYSUT3 if the number is greater than one.

The Symbol Table consists of two parts:

a random pointer table. (Hash Table - Appendix
J), and a sequentially forward-chained symbol
table. Each name (a literal with an * ref-
erence to the location counter is now in DC
format with the statement number as a name)
is hashed into the Pointer Table and the
appropriate pointer is examined. If it is
zero, no other previous names have the same
hash table location. The current name and
its attributes are then placed in the Symbol
Table segment at the next available loca-
tion and the address of that Symbol Table
location is placed in the Pointer Table. If
the Pointer Table is not zero, the routine
searches the Symbol Table chain in the cur-
rent segment for a matching name. If none

is found, the name is entered in the next
available location in the current Symbol
Table segment. The address of the new loca-
tion is then placed in the pointer field of
the previous entry in the chain. If a dupli-
cate symbol is found, the name is ignored.
Because this is a read-only phase (for text),
the duplicate symbol must be diagnosed in

a subseguent phase.

The format for the Literal Base Table seg-
ment is described and illustrated in Appendix
I. The literal work bucket in a text state-
ment (Appendix E) contains indicators which
describe the location of the literal relative
to its string (8-4-2-1) within the literal
pool associated with the particular LTORG or
END assembler instruction. The location

28

field in the Literal Base Table gives the
address of the 8-byte string (and by impli-
cation, the addresses of the 4-2-1 byte
strings) relative to the beginning of the
control section in which a particular pool
is located.

This table is passed in core to Phase
09I if it consists of only one segment.
Otherwise, all segments are written on the

overflow file SYSUT3. '
For each PUNCH or REPRO assembler instruc-

tion which appears before the first control
section, one card appears in the object
output before all other output (e.g., before
ESD cards) .

Routine Descriptions

COLENG

Creates computed GO TO for length
attribute collection.

DUMP

This subroutine is used to dump a speci-
fied number of bytes when called.

DUNSYM

Processes LTORG statement by PUTLB,
GETWKB and TESRAN.

GETPT

This subroutine contains the logic for
handling the records in the input buffer.
It establishes the pointer at the next
logical record in the input buffer.

GETWKB

This subroutine is common to all assembly
phases of this Assembler and is used to get
the information from the various work buckets
appended to text statements.

IEXTRN

Looks for a name symbol work bucket for
possible symbol entries.

LASTAB

Executes the end of data processing
including WTST, TESRAN, PUTLB and PHCLS
(calls the next phase).

MACHOP

Sets DOPCH switch for machine type
operation.

NOBIT
Tests for a conditional computed GO TO,
a possible symbol to enter, and a title card
to process (the first time only).
PHCLS
Phase close routine.
PHSIN
Phase initialization.

PUN1

Processes the PUNCH statements. Branches
to SYSOUT to output the punch statements and
resets the punch buffer.

PUTLB

This subroutine makes entries into the
Literal Base Table segment. It branches to
write the segment on the overflow file when
the segment is filled and resets the buffer.
PUTSYM

Hashes symbol and looks for duplicate.
Puts symbol in table unless already there.

REP1

Processes the REPRO statements.
SIzUP

Initialize hashing routine.
SOMSYM

Finds out if there is actually ahything
to enter in the Symbol Table and collects
the information for the Symbol Table entry.
TESRAN

Functional routine for TESTRAN.
TEXTI

This is the label of the first instruction
in the main logic of this phase. The first
section gets the input record, checks for

end of data, tests the record-type, counts
the statement, tests the operation type and

branches to the particular routine for the
particular operation. The routines that
make up the main logic of this phase are:

NOBIT SOMSYN PUTSYM IEXTRN
DUNSYM COLENG TY1 LASTAB
MACHOP

TY1

Processes the first Title card.
WTST

This subroutine branches to write the
Symbol Table segment on the overflow file
when the current segment is filled or at
the end of the phase.

PHASE 09I - ESD (EXTERNAL SYMBOL DICTIONARY)
OUTPUT - CHARTS 20 AND 21

Phase 09I reads the ESD entries put on
SYSUT3 by Phase 08. This phase prints out
the ESD items and ESD cards. The ESD items
include CSECTs, DSECTs, ENTRYs, and
EXTRNSs. Phase 09I adjusts the entries in
the Symbol Table by the starting location
of the control section that the Symbol
Table items is located in. 09I also adjusts
the Literal Base Table. Phase 09I does not
pass the text stream or produce any diag-
nostic messages.

On completion of this
transferred to Phase 10.

phase, control is

Functions

The input for this phase is from SyYsuT3 in
the format described and illustrated in
Appendix D. The functions of this phase are
designed to:

® Read in each ESD Table segment which was
created in Phase 08/08A/08B and build
an ESD Adjustment Table in main storage.

@ Read in each ESD Table segment again and
process it against each Symbol Table seg-
ment which was created in Phase 09.

® Adjust each Symbol Table segment to reflect

the starting assembled address for the
control section to which it belongs.

Assembly Phases 29

® Write the adjusted Symbol Table segments
on SYSUT3.

® Process, format and output the ESD seg-
ments on SYSPRINT and SYSPUNCH.

® Read in the Literal Base Table (it may
have been passed to this phase in main
storage) and create the Literal Adjust-
ment Table which gives the assembled
location of all literal pools.

e If the Literal Adjustment Table exceeds
one segment, write all segments on the
overflow file SYSUTI.

The entries in the ESD Adjustment Table
consist of ESD/ID and assembled addresses
for all control sections except COM and
DSECTS. The first entry contains the value
from the Operand field, of the START instruc-
tion. If this instruction was used, the
value was passed to this phase from Phase 09.
The HLF field (highest location for this
control sgection) of the ESD Table entry for
this first control section is then added to
the START instruction value to create the
starting assembled address for the second
control section. The HLF field for the
second control section is then added to this
value to create the starting assembled
address for the third, etc., until all ESD
Table segments have been read.

As the first ESD Table segment is being
processed against the Symbol Table segments,
each symbol in the Symbol Table segments is
adjusted to reflect the starting assembled
address for the control section to which it
belongs.

Processing the ESD Table segments involves
hashing the symbol in each ENTRY record. Then
if it is present in the Symbol Table segment,
its address is obtained and placed in the
ENTRY ESD record.

The Literal Adjustment Table is created by
adding the starting assembled address for the
control section in which the LTORG or END
is encountered to the location field of the
Literal Base Table to produce the starting
assembled address of the 8-byte string associ-
ated with that LTORG or END statement. The
lengths of the remaining strings are added
to this address to obtain the other entries
(for this literal pool) to the Literal
Adjustment Table. Figure 6 illustrates the
action schematically.

Routine Descriptions

CALLFS8

Writes the Symbol Table.

30

START CARD VALUE

20]6

ESD ADJUSTMENT TABLE

ABLE RECORDS
ESD/ID ASSEMBLED VALUE ESDT

. ESD/ID HLF

2
2 m% 1| 00y,
| “ ‘_\
2

IOOM

LITERAL BASE TABLE RECORDS

E5D/1D LOCATION String lengths
.

=
N

1 Fé14 10C 14

Starting
118 address
of strings

LITERAL ADJUSTMENT TABLE RECORD

Figure 6. Table Creation During Phase 09I

CALL10

The last instruction of the phase. A
branch is taken to write the Symbol Table
and to PHCLS to close the phase and call
Phase 10.
EI2B

Sets ESD pointer.
EI3A

Builds Adjustment Table entry.
EI3B

Determines ESD type.

EI3CF
Processes LD type ESD entries.
EI4

Sets ESD Adjustment Table item (ID,
START value).

EI8A
Gets next ESD segment.
EI1llP

Gets the Literal Base Table.

FSTLP

Sets the ESD pointer and checks for more
than 16 ESDs remaining.

GETLBT

This subroutine provides the Literal Base
Table records in the LTB buffer. If the
table exceeded one segment, all segments were
written on SYSUT3 in Phase 09.
LOOPSR

Searches the ESD Adjustment Table with a
Literal Base Table indicator.

NXESD

Determines if the number of ESD items is
greater than 16.

NXTST

Determines if the item needs adjustment.
NXTST1

Tests to see if this is the last segment.
PHCLS

This subroutine closes Phase 09I by branch-
ing to write out the Literal Adjustment Table
(if necessary), and calling the next phase.
PHSIN

This subroutine initializes for Phase 09I.
It includes instructions to set pointers for

the Literal Base Table, the Literal Adjust-
ment Table and the ESD Adjustment Table.

PRNTHD

This subroutine prepares the heading
records to be written on SYSPRINT.

PUTLAT

This subroutine writes the Literal Adjust-
ment Table segments onto SYSUT 3.

RDESD

This subroutine reads the External Symbol
Dictionary Table segments from SYSUT3 into
the input buffer.

RDST

This subroutine reads the Symbol Table
segments from SYSUT3 into a buffer.

RELFND

Sets the Literal Adjustment Table.
SECPAS

The first label of the logic that proces-
sed the ESD Table segments against the Symbol
Table segments.. It includes the routines
to adjust the Symbol Table entries (NXTST),
process ESD type (E13B), and create the
Literal Adjustment Table using the Literal
Base Table (ET11P, LOOPSR, RELFND).
SETSEG

Sets the number of ESDs.
SETSGR

Branches to read the ESD segment, makes .
an entry into the ESD Adjustment Table (EI4),:
points to the next ESD item (EI8A).
SETTWO

Sets the number of items in the ESD
segment into work bucket NOESD.

STADJ

This subroutine adjusts the symbol in
the Symbol Table segment.

SUB

This subroutine prepares the card image
to be written on SYSPCH.

SYSLST

This subroutine is common to Phases 09
through DI. It writes the records prepared
by the phase to be printed.
WTST

This subroutine writes the adjusted

Symbol Table segments onto SYSUT3.

PHASE 10 - SYMBOL SUBSTITUTION - CHARTS 22,
23, 24

Phase 10 reads text from either SYSUT2 or
SYSUT1, and performs any required CSECT

Assembly Phases 31

adjustment of the location counter. Any
referenced symbols are looked up in the
Symbol Table and their values are placed
in the text work buckets. Phase 10 also
writes all cross-references on SYSUT3 (over-
flow file). Phase 10 passes text once for
every Symbol Table segment.

On completion of this phase, control is
transferred to Phase 10B.

Functions

The functions of the phase are designed to:

® Read text from SYSUT2 or SYSUT1l and the
Symbol Table segments (adjusted in Phase
09T) and the Literal Adjustment Table
from SYSUT 3.
e Look up each operand field symbol in the
Symbol Table segments and attach the
value to the text statement. The Literal
Adjustment Table is used to obtain the
assembled storage address of literals
which, up to this phase, represent only
the displacement within a particular
literal string. (See Literal work
bucket of Appendix E.)

® Detect and flag symbols that have been
defined more than once and symbols used
more than once in the operand field of
an ENTRY statement.

® Output cross reference information on
the overflow file (SYSUT3) for sorting
and listing by the Post Processor Phase.
The input for this phase is from SYSUT2
or SYSUT1 depending on the number of
passes made of the text statements in
Phase 08. The format of these input
records is described and illustrated in
Appendix D.

The values are attached to symbols in
instruction operands which do not require
previous definition. Those that required
previous definition were collected in Phase
07 and evaluated in Phase 08.

- The text statements must be passed once
for each Symbol Table segment created in
Phase 09. On each pass, the previous input
and output system utility files are switched.
When the utility that was input on the first
pass is used as output, it is known as
iterate mode.

In performing the look up operation, this
phase checks also for the presence of Names
and Operands when required or their absence,
when required.

32

Routine Descriptions

ABR

Processes the Statement Type work bucket

(type A).
ACR

Processes the TITLE card records as they

appear.
ACO1

Process TITLE cards.
ADR

Processes the
(type G).

DC/DS type work bucket

AFR

Processes the
(type F).

literal type work bucket

AGR

Processes the Ordinary Symbol (Name) type
work bucket (type E).

AGO1

Looks up symbol in Symbol Table.
AGO091

Checks for duplicate symbols.
AHR

Processes the Length Symbol type work
bucket (type C).

AHO1

Gets value from Symbol Table.
AHO11

Sets pointers to statement fields.
AMR

Increments the location counter for
*symbol.

AMO1

Gets symbol value and adds length
attribute.

CLSTXT

This subroutine closes the text state-
ment data set after each pass. It includes
logic to switch the files (SYSUT2 and
SYSUT1) and interchange the I/O logic.

DPCHEK

This subroutine checks each symbol for
multiple definitions. The multiple defi-
nition flag is MDON.

GESRCE

This subroutine makes available the
next logical text statement record.

GETLAT

This subroutine makes available the next
logical record in the Literal Adjustment
Table.

GETWKB

This subroutine is common to all assembly
phases of this assembler and is used to get
the information from the various work buckets
appended to text statements.

LOGERR

This subroutine is common to all assembly
phases of this assembler and is used to put
error flags in the generated text flow.

LOOKUP

This subroutine looks for a symbol in the
Symbol Table segment that equals the symbol
from the text statement. Included is logic
to hash the symbol, to develop the address
of the hash pointer and to check for synonyms.

MLOO

This is the label of the first instruction
in the main logic portion of this phase.
These instructions branch to PHSIN to initial-
ize this phase. The routines that follow are
labeled MLO1, 02, 31, 34, 04, 05, 10, ABR,
ADR, AEC, AFR, AGR, AHR, ACR, AMR.

MLO1l

Tests the text statement for the presence
of a machine operation. If not, and the first
pass switch is on, it checks for the required
presence or absence of a name and/or operand
(MLO10, ML.O1l, MLO1l2, MLOL13).

MLO2
Tests for a TITLE, LTORG, PRINT, REPRO or

LITR (any literal) card and branches to the
appropriate routine to process the particular

type.
MLO04

Makes the cross-reference entries.
Branches to look symbol up in the Symbol

Table and checks for multiple definition
(MLO48) .

MLO5

Turns on name reference for cross-
reference. Branches to get the next work
bucket.
MLO10

Tests for requi;ed Name field.
ML10

This routine either terminates the job
or switches TEXTIN and TEXTOUT to make
another pass over the text.
MLO11

Sets pointers to statement fields.
ML0O12

Checks if an operand is required.
MLO13

Tests if blank operand is required.
ML 20

Tests if this is a LITR operation.

ML24

Turns off literal switch, EXTRN flag,
and first operand switch.

MLO31

Branches to get the Literal Adjustment
Table.

MLO34

Steps statement counter.

Assembly Phases 33

ML048
Checks for multiple definitions.
PHCLS

This subroutine closes Phase 10 by writing
out the cross-reference block and calling
the next phase.

PHSIN

This subroutine initializes for Phase 10.
It includes logic to set pointers in the var-
ious buffers and branches to read into main
storage the Symbol Table segment and the
Literal Adjustment Table.

PUTXRF

This subroutine writes the cross-reference
information when required.

RDST

This subroutine is common to Phase 09I and
Phase 10. It is used to read the Symbol
Table segments into main storage.

SETAST

This subroutine sets the Symbol Table
save area when the symbol in the operand
field is an asterisk.

SETNAM

This subroutine is used to obtain the
symbol name from the text statement.

STGET

This subroutine looks up the symbol in
the Symbol Table. If the statement is an
EXTRN, a cross reference is made. Included
is logic to test for additional Symbol Table
segments.

SYMSCN

This subroutine scans the symbol in the
operand field. If an illegal character
appears in a symbol, the scan terminates.
It places the symbol in STSYM.

WTXRF
This subroutine writes out the last block

of cross reference information at the end of
the phase.

34

PHASE 10B - EXPRESSION AND DECIMAL CONSTANT
EVALUATION - CHART 25

Phase 10B evaluates all expressions not
requiring previous definition, with the
exception of some expressions used in address
constants. It processes the USING, DROP and
listing control instructions. It also
produces source records from the edited text
records created by macro expansion and con-
ditional assembly substitution. Finally,
this phase rearranges or substitutes the
format of some edited text records in prep-
aration for processing by succeeding phases.

The input for this phase is from SYSUT2 or
SYSUT1 depending on the number of alternating
passes made of the text statement records in
Phase 10. The output is written on SYSUT2 or
SYSUT1, whichever was not the input data set.

On completion of this phase,control is
transferred to Phase 21A.

Functions

The functions of the phase are designed to:

® Read the text records from SYSUT2 or
SYSUT1 and locate the next logical record.

e Evaluate the expressions not requiring
previous definition and place the wvalue
in an evaluation work bucket (Appendix E).

® Process the USING, DROP, PRINT, SPACE,
EJECT, TITLE, PUNCH, MNOTE, EQU, ORG,
DSECT, CSECT, and END assembler instruc-
tion statements.

® Create object records for the USING,
DROP, CSECT, DSECT, COM, ORG, EQU, CNOP,
DS, TITLE, PRINT, and END assembler
instructions.

® Rearrange the format of the text records
for the TITLE, PUNCH, and MNOTE assembler
instructions.

® Update and output the Register Avail-
ability Table (Appendix I) for each
USING or DROP assembler instructior.

® Update and output the Switches Table
(Appendix I) for each PRINT, SPACE,
TITLE, or EJECT assembler instruction.

The evaluation work bucket replaces the

type B,C,D, and E work buckets that were
appended to the text records in Phase
07/07A/07B with the exception of

1. A type B work bucket added to record
because of a comma, blank or paren-
thesis, used syntactically.

2. For SS type instructions, additional
parenthesis (type B) work buckets may
be inserted for syntactical purposes.

3. An ADCON that contains a reference to
the location counter (*) and a dupli-
cation factor greater than one. All
other DC/DS statements drop all
appended work buckets from their output
except the type A and G which already
contain the evaluated value.

The evaluation work bucket contains the
assembled address resulting from the expres-
sion evaluation and indicators. For ADCONs,
the indicator tells the linkage editor what
values to add and/or subtract from this
value when relocating the object module. For
other statements, the indicator is used by
succeeding phases to determine the ESD
identification number.

Each time a USING or DROP assembler
instruction is processed, the Availability
Table is updated to indicate which registers
are currently available to the assembler and
what values they are specified to contain.
This table is written out in the text stream
each time it is updated, to be used by suc-
ceeding phases to develop addresses in the
base/displacement form.

The Switches Table is updated to indicate
what listing actions are to be taken (e.g.,
space, eject) and which listing options are
currently in effect (e.g., Gen. Data). This
table is written out in the text stream each
time it is updated, to be used by succeeding
phases to control the assembly listing. A
TITLE statement updates the table in the
same manner as an EJECT statement. In TITLE,
PUNCH, DC, DS and MNOTE processing, double
quotation marks (") and double ampersands
(&) are replaced by ' and & respectively.

The source records (Appendix D), created
in Phase E2 or in this phase, are used to
create the listing image records for the
right-hand side of the print line of the
assembly listing. An object record (Appendix
D) is used to create the listing image record
for the left-hand side of the print line.
These object records replace the associated
edited text record and its appended work
buckets.

The format of the PUNCH statement is
rearranged so that succeeding phases can
treat PUNCH and REPRO statements similarly.

In processing an MNOTE statement, an
error record is produced if the severity
code is not (%*).

In processing an EQU statement, the
expression in its operand field is reevalu-
ated. If the expression is absolute or in
error, the result of the Phase 07 evaluation
is retained. However, if the expression is
relocatable, the new reevaluated value,
reflecting the proper assembled address and
ESD/ID, is retained.

When the END assembler statement is pro-
cessed, the operand is examined for validity
and the associated dummy CSECT and ORG :
records (created by Phase 07/07A/07B)} are
dropped. Only the edited text statements
for the END and the associated LTORG records
are retained for further processing.

Routine Descriptions

BLDIMG

This subroutine builds a source image
from record types 100, 111, and 011l. It
changes edited record type 111 to generated |
record type 0ll and generated record type 10Q
to generated record type 010. However, if
the edited record is a literal, the generated
record type is made 000. Register GRA pointsg
to the first byte of the input record.

CLEAR
This subroutine clears an 80 byte area.
ECCWX

Sets up to branch to appropriate evalua-
tion routine.

EEND

Processes END statement.
EENQ

Processes END statement.
GETBKT

This subroutine is used to make avail-
able to the program the next work bucket
from the input record. It contains a
branch to the subroutine GETWKB which is
common to all assembly phases of this
program and contains the logic necessary

to interrogate the work buckets that are
appended to the text statements.

GETPTR

This subroutine sets the pointer at the
next logical record in the input buffer.

Assembly Phases 35

It is used by MLl in this phase.
GETXTM

This subroutine moves the text record
into the output buffer. It includes the
common subroutine MOVE that moves any size
block within main storage from the location
indicated by register GRY to the location
indicated by register GRZ.

ML1

This is the label of the first instruc-
tion in the main logic portion of this phase.
These instructions branch to get the next
logical input record and set and reset
switches and test for record type.
ML2

Processes record type 011.
ML2C

Processes record type 000.
ML2G

Processes record types 100, 110 or

111.
ML2T

101,

Constructs for printing before processing
record types 110 or 1lll.

ML3

Processes the contents and tests for
type of assembler operation.

ML3A

Branch to appropriate routine for type
of assembler operation.

ML3F
Processes DC, DS, or LITR.
ML9

Checks for any error in the statement
being processed.

OBM

This subroutine is common to all input/
output routines in the assembly phases of
this program. This routine is entered with
the RLI in register GRX and exits with
OCT+4 words (Output Control Table) in reg-
ister GRZ. The return register is SRR. 1In
this phase it is called by GETXTM, PUTERR,
and PHCLS.

36

PHCLS

This subroutine closes Phase 10B and calls
the next phase.

PHSIN

This subroutine initializes for Phase
10B. It includes instructions to set
pointers in the input/output buffers.

PUTBKT

This subroutine is common to all assembly
phases of this program and is used to append
the various work buckets to the text state-
ments.

PUTERR

This subroutine is common to all assembly
phases of this program. It is used to
retrieve a logical error record (or any
record) and store it in the text output
buffer.

PHASE 21A - MACHINE INSTRUCTION EVALUATION -
CHART 26, 27

Phase 21A reformats storage addresses used
in machine instructions to base displacement
format, converts fixed and floating point
constants to their binary equivalents, and
creates object records for all but DC, CCW
and literal statements. The input for this
phase comes from SYSUT2 or SYSUT1 depending
on the number of alternating passes made by
Phase 10 and writing is done on the other
of the two data sets.

On completion of this phase, control passes
to Phase 21B.

Functions

The functions of this phase are designed to
perform the following:

® Complete the processing of all machine
instruction statements.

® Evaluate all fixed-point (types F and H)
and floating-point (types E and D) con-
stants and place the evaluation in the
evaluation work buckets (see Appendix E).

® Write source and error records unchanged
into the text stream interspersed with
the edited text and object records.

The input record is checked to determine
its type, then processed accordingly.

Source and Error Records. Source and Error
records are passed to Phase 21B unchanged.

Edited Text. Edited text is further checked
to determine the statement type.

For machine operation statements, object
records are created to be used in printing
the left-hand side of the listing. The
location counter value, machine instruction,
operand addresses (in base displacement
format), and the effective addresses repre-
senting the operand fields, are entered into
the object record. The Register Availability
(Using) Records are used in deriving base-
displacement addresses from effective
addresses. The object records are placed
in the output stream in place of the edited
text records. For CNOP statements, the
correct number of no-operation instructions
is generated and placed in an object record.
Statements containing type ¥, H, E, or D
constants have their operands converted to
binary and placed in the proper work buckets.

Statements other than machine instructions,
CNOPs, or type F, H, E, or D constants are
passed to the next phase unchanged.

Other Records. Records other than source,
error, or edited text records are passed to
the next phase unchanged (e.g., switches
records, etc.).

In evaluating constants, evaluation work
buckets (type H) are appended to the DC, and
literal text records as required. If a DC
or DS statement is flagged to not be evalu-
ated, all the work buckets appended to the
text, except one blank (type B) delimiter
work bucket, are eliminated from the output
of this phase (see Appendix E).

Routine Descriptions

DCNVRT

Processes exponent and scale modifiers.
ECNOP

Generates the required number of no-

operation instructions and places them in
an object work bucket.

GETPTR

Gets pointer of the next logical record
in the input buffer.

GETXTM

Gets text and moves it for use by
21B/21C/21D.

LITRDC

Converts the operand field of type F, H,
E, and D constants into binary.
ML1

Resets the error count and error switches,
locates the latest input record, tests for
end-of-data, and determines the record type.

ML2C

Passes source record to 21B.
ML2J

Outputs the current record.
ML2M

Points to the record to be output and
branches to routine PUTERR which puts this
record into the text output buffer.

ML3

Tests the 'catastrophy' bit and, if the:
bit is set, branches to MLl; otherwise,
starts building the left-hand print area.

ML3A

Tests for CNOP to determine if alignment
is needed.

ML3X

Branches to routine CTRLEV which evalu-:
ates the operand fields of machine operatian
instructions.

ML4T

Dumps a record containing an error into
the text stream.

ML4X

Processes machine operations.
PHCLS

Phase closing routine.
PUTERR

Writes errors.

Assembly Phases 37

PHASE 21B/21C/21D - DECLARATIVE PROCESSING
AND OUTPUT - CHARTS 28, 29, 30

The input for 21B is from SYSUT2 or SYSUT1.
This program segment evaluates and converts
declarative statements (DC/DS/Literals) to
their object form and formats them for writ-
ing. Relocation List Dictionary segments
for relocatable and V-type constants are
created and written in 21B. The program
segments 21C and 21D are alternately in
main storage with 21B. The processing of
DCs of type A, Y, V or S is done in seg-
ment 21D. All other address constant
expressions including all CCWs are processed
in 21C. The RLD table is written on SYSUT3.
The object program is punched on SYSPUNCH
and the program listing is printed on
SYSPRINT.

On completion of this phase, control
passes to Phase PP.

Functions

The functions of the phase are designed to
perform the following:

® Convert declarative statements to their
object format, including any necessary
truncation or padding.

® Decompose any S-type constants into base-
displacement form.

® Evaluate type A, Y, and S constants which
contain location counter references (*)
and have a duplication factor greater
than one (overlay 21D).

® Build a Relocation List Dictionary Table
containing entries (see Appendix I) for
relocatable type A, Y, and V constants,
and relocatable second operands of CCW
statements.

® Write the RLD Table on SYSUT3 for proces-
sing by Phase DPP.

® Pass error records to Phase DD.

e Punch the object program, in object
module form, on SYSPUNCH.

e Print the program listing (excluding RLD,
cross-reference listing, and error mes-
sages) on SYSPRINT.

The current input record type is checked

38

to determine if it is a source record,
edited text, or some other type.

Source Records. Source records are used to
form the right hand side of a listing line.

Edited Text. Edited text is checked to
determine the statement type. The state-
ment may be an MNOTE, PUNCH/REPRO, DC/DS,
CCW, or a literal.

MNOTE - reset switches and bring in a new
record.

PUNCH/REPRO - translate and write on
SYSPRINT and SYSPUNCH.

CCW - the operand is evaluated, formatted
and written.

DC/DS - perform any necessary alignment,
evaluate the operands, and write the results
each time eight bytes have been accumulated.
If the PRINT 'DATA' option is not specified,
only the first eight bytes of the evaluated
constant will appear on the listing. 1In
evaluating constants, one of two evaluation
routines will be used. The deciding factor
is the combination of parameters used in the
operand fields. Any type A, Y, or S constant
that contains a location counter reference
and has a duplication factor greater than
one, must be evaluated by a routine con-
tained in overlay 21D. Other constant
operands are evaluated by a routine in
overlay 21C, which is considered to bhe the
normal overlay. Each DC/DS operand has its
own work bucket from which the required
evaluation routine can be determined. Rou-
tine SNFRD checks whether the required evalu-
ation routine is in core and, if it is not,
branches out to either OVERLAYA or OVERLAYB
to bring it in.

It is possible that both evaluation
routines may be used in evaluating all of
the operands of a statement, and either one
could be the last one brought into main
storage for a given statement. Since 21C
contains a CCW evaluation routine which will
be required if the next statement should
happen to be a CCW, 21C is always left in
main storage or brought in, if necessary,
after the last operand of a statement has
been evaluated.

Other Types of Records. Other types of
records that might be encountered are object
records (used to form the left-hand side of
the listing), the dummy LTORG record associ-
ated with the Assembler END statement,
register availability (USING) records, list-—
ing control switches record, and TITLE
reformatted edited text records.

Information in the object records is

written on SYSPRINT and SYSPUNCH.

Availability, switches, and TITLE records
are maintained in their appropriate table or
storage area and appropriate listing and
forms control action occurs. When an end-
of-data condition is reached, a branch
occurs to PHCLS which empties the punch
buffer, puts an end-of-file indication in
the Relocation List Dictionary and I/0
Parameter Table, releases the 400 bytes of
storage acquired for this phase, and passes
control to Phase DPP.

Routine Descriptions

BLIGN

Perform any necessary location counter
alignment.

BMG

Processes the first operand.
CHKSWJ

Entry point to the print routine.
DCEVAL

Evaluates DC and DS statement operands
using subroutines SNFRD, BLIGN, DSCHECK, AY,
CT, SUBL.
DUMP

Entry point to the punch routine.
EINS8

Processes the first operand.
EVLCCW

Processes CCWs.

F8PRNT

Output routine.
LOADRA, GOTXT.

Includes CHKSWH, LOADLH,

LOADRA - load right half of output page
LOADLH - load left half of output page
CHKSWH - print routine

GOTXT - punch routine

GETBKT
Gets the next work. bucket.
GETPTR

Gets the pointer to the next logical
record in the input buffer.

LBJ
Brings in evaluation routine.
LINK21C
Calls overlay 21C.
ML7
Phase initialization.
ML9

Determines the record type and branches
to the appropriate handling routine.

MLO9M

Moves data to Value and Availability
Tables.

ML9X

Punches TXT cards.
ML10

Sets up the heading.
ML11

Determines the type of record.
ML12

Picks up the ESD-ID number.
ML13

Prints the record.
ML13X

Moves in the processed left side of the
listing.
ML14

Moves processed left side of listing for
printing.

Assembly Phases 39

ML15
Tests for error record.
ML20
Writes error.
ML30
Checks for MNOTE error.
OVERLAYA
Calls in overlay 21C.
OVERLAYB
Calls in overlay 21D.
PHCLS
Phase closing routine.
PHSIN
Phase initialization routine.
PUTERR
Writes the error record.
SNFRD
Finds the DC work bucket and moves the
required information from the work bucket
into aligned storage. Checks if the proper
overlay is in core and brings it in if neces-
sary.
SNFRDD
Processes entire DC or DS.
WROF
Writes the overflow file entry point.
WRRLD
Writes overflow file.
ZWE13

Prints statement.

ZWE14

Processes DC.

40

PHASE PP - POST PROCESSOR = CHART 31

Phase PP reads RLDs and XREFs (cross-
reference records) from the overflow file
(SYSUT3). The RLDs are written on SYSPRINT
and are packed into card images and written
on SYSPUNCH. XREFs are sorted in core if
possible, if not, a tape merge sort is per-
formed using SYSUT2 and SYSUT1l. The sorted
cross-references are written on SYSPRINT.
Phase PP also writes the END card on
SYSPUNCH. All output from PP is controlled
by the OPTION card.

Functions

The functions of this phase are designed to
perform the following:

® Produce the Relocation List Dictionary
and the Cross—-Reference List, if
requested.

Phase PP sorts the Relocation List Dic=-
tionary entries by address. The sorted
dictionary is written onto SYSPRINT and
SYSPUNCH. The loader END record is con-
structed and written onto SYSPUNCH.

If the EXEC record contained the option
XREF, Phase DPP sorts the Cross-Reference
Table entries by symbol. The sorted table
is written on SYSPRINT.

Phase PP closes the utility units SYSUT2
and SYSUT1 and, using XCTL, transfers con-
trol to Phase DI.

NOTE: The algorithm used in the internal
sort of Phase PP is that described by D. L.
Shell in the July, 1959 issue of the ACM
Communications (vol. 2, no. 7, pp. 30-32).

Routine Descriptions

CHKSWH

Sorts the Jump Table.
EPPGO

Initializes the phase.
EPRL2

Writes merge tape.

EP2
Writes merge tape.
ESORT

This routine performs the sorting of
input data.

GTOR
Reads the Control Table.
GTOX

This routine checks for the Cross-
Reference List output option.

PPIN
This routine initializes the Phase PP.
RD1RLD
Merges RLDs records.
RD1XRF
Merges cross-reference records.
READ

This routine reads the Relocation Dic-
tionary input and stores it.

READR

Reads RLD records from input tape and
stores them.

READX

Reads cross-reference records from input
tape and stores them.

SETOT1

This routine wrxites all Relocation Dic-
tionary data from main storage.

SETOT2

This routine writes all Cross-Reference
data from main storage.

WR1RLD
Writes RLD string on SYSUT3.
WR1XRF

Writes cross-reference on SYSUT3.

XRFLOD

Start of cross-reference input pass.

PHASE DI - DIAGNOSTIC - CHART 32

Phase DI reads the error records from the
overflow file (SYSUT3). Table lookup of
error numbers is performed to find the cor-
responding error message. The statement
number and message number are converted to
printable format and listed with the error
message on SYSPRINT. Phase DI output is
controlled by the OPTION card.

Functions

The input to this phase is the error records:
on SYSUT3. The functions of this phase are
designed to perform the following:

® Write diagnostic messages.

® Accumulate and print the total number of
error statements in the entire assembly.

® Process the highest severity code.

Before printing any error messages a check
is made to determine if any relocatable Y-tyte
constants have been used in the program. If;
any have been used, message 46 prints as a
flag to the programmer. The limited addresss+
ing capability of the Y-type constant, due
to being only two bytes long, could present
problems if the program is run on a system
with over 65,535 bytes of storage.

Following the flagging of Y-type constants,
a check is made to determine if there are
any error records to be flagged; if not, the:
word 'NO' is inserted into the 'STATEMENTS |
FLAGGED...' message, this message is printed,
and the phase exits to RTB. If there are
error records to be flagged, each error :
statement number is listed with an appropriat
message identifying the error. A total of
the number of statements flagged is accumu-
lated and printed.

As each error message is processed, its
severity code is checked. The highest
severity code encountered is saved in
Register 15. The phase exits to RTB.

Routine Descriptions

EDGO

Locates the error block count, tests the
Y-type constant indicator, and if necessary,:
points to message 46 in preparation for :
printing the 'AT LEAST ONE RELOCATABLE
V-TYPE CONSTANT...' message. If there are
no relocatable Y-type constants in the pro-

Assembly Phases 41

gram, branch to ML0O.
GETERR

Reads error record.
HCC

Stores, in Register 15, the highest
severity code encountered.

MLOO

Tests if there are any error records to
be processed. If there are no error records

to be flagged, the 'NO STATEMENTS FLAGGED...'

message is built, then a branch to ML1ll
occurs to list the message. If there are
error records to be listed, this routine
exits to M41lA.

MLO1

Gets the next error record. If the last
error record has been read, a branch occurs
to ML1O.
MLO1A

Gets the error statement number and
accumulates an error-statement total.

42

MLO1B

Converts the error statement number into
decimal for listing and points to the approp-
riate error message.

MLO3

Converts the error message for listing
and lists it.

MLO5

Compares the error statement severity
code to the highest severity code yet
encountered. Saves the new severity code

if it is higher than any previously
encountered.

ML1O

Prints the total number of statements
flagged.

ML11

Lists error message.

ELEET R LR L2 2]

*
:ENTRY TO MACRO :
ELES LS RS £ 22 228

Xe e o

ERIEE R 2E L T]
x *

« ESTAB
* DCB!S SYSIN,
tsvsLiB

* % %%

AR AR AR RARAK

e o s 00

AR C DR
* *
* OPEN * SYSIN
#MACRQ GEN DATA + SysuTl
& SETS * SYSuUT

*® *
K k gokok ok koK kK

Xe s 000

GFTSRC
*#*t*DB!ltt‘tt*t:

- *x

*®

* READ

*« INPUT TEXT
« SYSIN

«

&«

EAR SR LSS S L2l

Xe 0 400

BWFORC
1**#:53*&*‘***##:

«
WRITE *
*® SOURCE TEXT ¥
t SYSUT1 :
ARRERRERRERRER R

ISICTL
*E

PROCESS ICTL

* %% %

4
*
*
*
*
*®
*
«

EEIEEL 2221222224
-
-

.
.

.

.

.

.

.

.

.

.

HAGIRARARRDRRE |
L

.

M

.

.

.

.

.

.

eXeoeosnoove

:
TUNEXT .

‘*‘*ﬂHaﬁﬁttllt.‘
E TO PHASE E2 E
kA kR gk Rk

Chart 01. IETEl

Flowcharts 43

Lid 2]
- *

* A3 #
* "0
*hkk
.

.

X
HREERHATERA AR AR

XAk A kR gkk kR
] * WRITE
® PHASE E2 * TABLE FILE
» * SYSUTZ *
EEE LRI ESEL LT L]
- ARBRRERERERRE
- Rk .
- * * .
. * B3 *.X.
- » * .
X ETIL] .
MACLIB ¥ NDSMT3 X
*, LR gt Rk ER PR 22 2T
¥ *, WRITE
«* SOURCE *, YES * PARTIALLY *
- INP e¥euoo ED!TED TEXT
ﬁ.g(‘mPLETE ok . * YSUT1 *
, o X R ERR RN
* NU EEL 2] -
. * » .
. * E3 * -
. * * -
- Rk -
. X
X MEND . DCLOSE %,
xRk C 24k bRk ko c3 L C4 *,
* * . *g ok L 29 *kokk
* SET SYSMAC * - *, YES «* SODURCE *,. NO * *
*QFF FILE B¢ = * *o MEND e¥esvencosX¥, INPUT e¥oanaX*¥ D2 X
* SYSIN * - . * COMPLETE o * ®
* * - o* - . *kkk
Lt e IS 2L EE L] ¥, o ¥ *x, o
- * NO * YES
L2 L2 o - -
* * . .
* D2 *.Xa - .
* ¥ osXeesecoecans s .
RN X X
DRIVER X « END ¥ o¥a
REE R 2 o2 21 222 22 1 0 T] - D3 ", D4 - Ao ok K 6 ok X feod Rk ok kR
- * *, ¥ *o
* READ * - NO .* *, X MURE *, YES At Ao A e e e
SOURCE FILE essnse, END ¥ *oSYSTEM MACROSe*eceececeaseX SYSTEM MACRO
* ge * - ¥ *. ok * SYSLI® *
* g ok x, o ¥
LRSS 222 S LT x, x *, o Ak ok fokok o
. YES * NO -
- kkk . - -
- * * . - .
- * E3 ¥,X. - X
. * * oXsesesassecessccccenancnce *EEx
X RN - * E3
ok, S$Y200 X * D2 *
E2 *, bbb Al EELL I L L2 L L] * *
. *, * * & ke
YES % *, * S§Y *
eenes ¥ SYSTEM MACRO ¥ * FILE '8 = *
- *, ¥ * SYSLIB *
- *, ¥ * *
- ey ¥ LR R R L2 EL 2L 22]
. * NU -
- E -
«WRTAPE X .
« HREKFAEF2ARRERRE KRR X
- AR EEL IR 2212
- * WRITE * * *
< SCURCE SYsuT1 * PHASE E24 *
: kSRR ERERRR
. LR AR 222l Ls]
. .
essscscscesXa
:
NOPSK X
“#t#GZ"*.#ttt#:
* SCAN *
:OPERM'!CN FIELD:
* *
AN R kb BOR ook Rk K
.
X
oPOK ¥,
H .
¥ - xRk
«% UNKNOWN *. NO * *
*, MNEMCNIC e¥esoeX¥ B3 *
* ., 0PERATION. * X *
*, o¥ . whEER
*, * .
* YES .
. .
: .
MCRINS X .
AR OK D kb ok ok K .
* .
* PUT * .
* NAME IN TABLE »* -
* * -
* * -
RAERL LRI TS LT 22 1 -
. :
. .
X .
BWFORC ¥ .
. .
¥ *, -
.- *. NO .
*, TABLE FULL <%.esa
*g ¥
*, ¥
*y ¥
* YES
.
X
whkR
* *
* A3 *
* *
Chart 02. IETE2 e

44

EL RS T EEE LS St Ll

*
* ENTER OVERLAY :
AL ErS L2 2L

KRR

e

PREGET
ERT R SR AL L Sl L

* READ *
MACRO TABLE

* SYSUT2 *

Rk Rk ROR

Xe o o0

MOWR
‘*t##c3l#“‘#“‘:
»

SUBSET_MACRC
TABLE

% EE
- % %%

PR RIS LRI R ET 2 L2 L]

wXo s e e

FINALE

. NOMAC
o ‘. HRARRDLERRR AR AR

- *, NO *
, UND NED o¥cesveceeX® TO PHASE E3 *
*, MA ¥ * *
Rk AR AR

*,

om>
N2
Qm=<

.
<% W
m s
v »

e 0 0 0 8 ¥

WRGT
R KR E RN EERRAR R R
* WRITE
SUBSET TABLE
* Sysut2 *
AERRRAEERK KR

e

#t##F3#‘*#"’*t*
* TO PHASE E2 :
SRR EERERREE A AN

Chart 03. IETE2A

Flowcharts 45

T e
* * * *
* A2 * x A3 *
* M M .
ko Rk
N N
. X
ENDSMT PSDOPR ¥
FERER LKA 83" s,
Ry * ENTCMT * .* *.
* t—t-t—t—o—t- kK «*% BRANCH TO *.
* BEGIN PHASE 3 * EDIL * *, APPROPRIATE .*
* * t THE COMM[:NTS * PSUDC OP DRIVER
AARRE RS RS EIELD * *, ok
- “’.*4"’*".*“" X, ¥
- - *
: Xeooesoaesosns :
INITLZ X NDSHT3 . . DCLRTN
AR E SR LSS EE 2 22 3 *% * ok kR - ° ‘*'*‘B‘#l‘t.#*‘l**
v COMNOR-AREA iy «URATE S : : *PROCESS GLOBAL *
*REAC_FIRST UT1 % * £ * : TeesesssecccsusadX® AND LOCAL %u...
* TEXT BLOCK * * E TEXT * - - * DECLARATIONS * -
* * * RE N UT2 * . . . Ty
R P T LE ST EE T R T2 2 3 XX EXES 22 13 - - ok Rk Rk Rk Rk - *
- - . * *
*%E¥ - . - - * €1 *
. . . Aotk
* (1 *.X. - . X
L ceseeeaians o R LRI :
GCLOSE X NDSMT4 B - MEND -
:ﬂ##tcl*l"**“‘: :‘t#‘ #**;‘*“": - - KRN RCHAEERRE R KKK e ok (5 hokokok fole ok ko) X
. - * * KDOPRY
* INITIALIZE * P e e S : : * PROCESS * PSP e ol N
* FOR NEW MACRO * * TE * - veesssscscencsene XEMEND STATEMENT *coueeaoeX OUTPUT
: UR OPEN CUDE : .UP‘E‘ EégRDS: - . : * * FOITED TEXT =%
» . . * o
ER LS 22 2P EE 2] 3 *E kK *kkkrkk - - ok ok ok ok ok koK koK K *"5&*2&2****
DRIVER X NOERR . :)
SREXED | KE kR R EK *, . . :‘**#Dlp‘z*“**‘t: #‘tt*ﬁb**#**tiﬁt:
* * - *. - - *
* INITIALIZE * NG .* -, - - *e ‘—""'*‘*—“—*- *—% * FORCE RCTURN »
* S *Xenosooseke N ¥ - sessscsscecscccnsnc X¥ ¥oeneeeeaX® FROM ENNSMT
* STATEMENT : * TED * - - " UPERAND FIELD * * ROUTINE :
* * - -
RARERFRENR R RREK '. - - ‘ﬂ"t‘*#'#**t‘ﬁ‘* ok A o ok O RO R R
. YES - - -
X X : : X
AR RE] Rk Rk EEERRE 2T RRR R RRE - - Aok okE Shok SRk ke &
GET * * - - ENDSM
HHm ke ke e m M * RETURN * . . PR s)
LOCATE * TG CALLER * - .
* FIRST INPUT =* * * - - *QUTPUT FOITED*
RECORO * * - -
FARREARRRRARE R A R R4 . . Sk ARk
: : : T e
. . . . ® »
- - - sa X% C1 ¥
- - . * *
- - - ke
X - - nDc DS ake
EAR SRR R 2222t) P - *““Fl’*******t** 5 *,
* GSCAN * - - *
e e e B e e e - - *—t-*—#—t—t-*—*—‘ SHOULD *. YFS
* * - emenencsscssnssces Xk *¥eansesaeX¥, ATTRIUUTCS REa¥eans
:SCAN NAME FIELD: - - “ DPFPAND F1ELD * .gf‘Ll FCTFE.‘ -
EIITI T RS TS T T : : t****"*'*t‘“"‘*‘ .*. .*' :
- . *® -
. . M . kxR .
. . - * .
- - aa X% A2 : .
D“vgntttolttttttt*tt : . ok s
SCAN * . - ASCAN .
#—t-#-t—t—-‘r—#—#—# . - FRRAHC S ok AR K X .
* SCAN H - . o cour F
* . -
*CPERATION F‘ELDt - - cee¥® ATTRIBUT&S *Xoae
ERAERERBRRRS DR RRE . - . : :
. : . X ok ok ok Rk koK ok
: . . ok
% . . : Ao press
ORVAC ™", . . T X AD Xl
¥ S “*'HZ“’*“"* . . * RoRk **
«*THIS MACRO *.‘VFS b A‘ : : * X
*1, INSTLOR ¥i.li..o.X3T0 SUBPHASE E3A% . : sesesmossnsereery 5 .
*.‘ ‘. t“#t‘#".‘#“‘ : . ‘ PROCESS OTHER * ‘ AS ' *.
.‘.NU . --.-c----.--.--..)(* PSEU%UIUPS AS *-.-.o.-.X*. APPRnPR[ATF ¥
. . s, o
X . u*unuttnuu oy ok
vaLCOP o : .
J1 o % cecocseacnenans . teceattcsascccncssssssasenns .
S I Y [P cesssseccccanns P
«% A MACHINE *. NO
".'INSIRUCTl N e*eeee
“x. -t .
* X
* YES ‘tlt‘
- * A3 %
MCHINS X NDOPRO
(L QR T2 2T 2T Y *kRE ‘**"K3"‘U‘ﬁ¥"‘
* GSCAN * *
O e * SET uP *
- RETURN T *
: UPERANC FIELD : : CALLER 0 *
*
EEEE ST T TR Ty LA A LIRS 2 S 1
. N
X X
2] *EEE
a2 YR
.
* * x A2 :
ek e
Chart 04. IETE3

46

NXTOPO

AR AR AL kAR
HRREA2RRR R RET * *
* * * SET POINTER *
*BEGIN PHASE 3A x * T *
* * OPERAND SCAN =
LR AR RS S Rl Y 2] * *
. T T
. .
. :
p X
BEGINZ X MCR1C NXTOP1 e NXTOP2
ko ok B2 Rk kK Fkk g B I kdokkikiok B4 *, *tu:gqn:ﬂntut
*INITIALIZE FOR * * .# . LE
MACRO e e e o B B e A IS IT *, t * - t-—t—t—#—#-t—
*INSTRUCTION OR * * ¥eoee ". gS[BLY .‘........X* SCAN *
: PROTOTYPE : :EDH‘ NAME FIELD: . UBLIST* : ONE OPERAND :
*kk kE . *e *, ok kR Aok KR AOR KRR
- X - * YES -
. . . . -
-
. - . . .
.
X « YES - . X
¥ PTSBHD oo . X ¥
c2 *, C3 *. . ARk 4k Rk koK cs *,
o*_ IS - . . - * * *,
% THIS A *, DOES *. . * INITEALIZE * YES o% 1S 1T *o
, PROTOTYPEX". NAHE FIELD % - * FOR _SUBLIST =* caa¥, LAST UPFRAND ok
*,STATEMENT. % *, EXIST .* . * SCAN * .
*, ok *, o¥ N * * . “x, Y
*, ok *, ok . Aok ok Rk kKRR K X . %
* YES * NO - . "N‘**‘ * NO
: . : : * G4 % :
. . . . * * .
M . . . PEIs .
. Y . . .
PROTO X MCRINS X - . X
"tttoz*atttttttt Rk kD 3Rk Rk . . WA A G AR Rk
* LOOKUP * * - - N
* t—t—*—*-t—‘—t- *GENERATE EDITED* . . A = o K
* PRODUCE POINT * * TEXT FOR NULL ' . . WRITE EDITED
*0P RECORDS FOR * * NAME FIELD . . * TEXT FOR *
* PROTOTYPE * * . . GPERAND
LR R Eag P Re e T Aok kR ok . . Aot dokRoR ok Rk
. . : rx | :
. eXeesooseoosason * * . -
- - * E4 ¥.Xeo -
. . * 0 .
. . L I N
PROSCN X MCROS X SUBNX1 X
FRFRKE 2R R KK HRRHAE RN RN Rk ook E 4 kR AR OKE 5 Aok R KAk
* - * ENDOPR * > LEGOP * * *
* PCINT T0 * L i T ST P] K N B e K * FETURN *
* ART * ouTPUT * * SCAN * * TO CALLER OF =
* OPERAND FIELD * * NAME FIELD * * (ONE _SUBLIST =* * NXTOPY *
* ECITED TEXT * * OPERAND * *
ELEL PR P s P PR TS T 2 T T A A AR ok Ak AR R
. s .
* . . .
* - . .
* . . .
* . . X
PRSCNO by MISCAN X. ¥,
MARR A 2Rk KRRk PO P T T F4 O x, AAARKRE 5 # Rk
* * * * * *, no
* !NITlALllE * * POINT TO * a0 1S 1T *, NO ek — i K R
* FOR NEW * * START OF * *, END OF e¥eesaseeeX WRITE EDITED
* PARAMETER * * OPERAND FIELD * *, SUBLIST .* *TFXT FOR SUR-—%
* * * * *. ¥ LIST GPERAND
AR R AR AR AR .t';ES FhRok kAR KK
M * ErT I :
. * * o -
. . * G4 *,X. X
. esescscscccXe * . ELLE
X - - AR - * x
¥, . X RPUPED X * F4 X%
G2 %, . ARG 4 r—— » .
T o *, P NXTOPO * ENDDPR Ak
* * YES o*IS THIS END*. . t—t-t-t-m—t-t—t-t e K e
* G4 *Xosee*. OF OPERAND . csoak ROCESS * QUTPUT EOITED
* * *, FIELD . * ONE OPERAND * *TEXT FOR LAST*
P2] *o o OPERAND
n.‘.* AR AR AR R KR sk ARk kKRR
. :
. -
X :
uatmztunt"nt X
RSYM P T
l-*-t—t-*-*—*—t—l *
SCAN *TO MAIN PHASE 3%
* ONE VARIABLE =* * *
* SYMBOL . ook Ak kR Rk
PR R T > PR T
-
%
NTBORC ¥,
BRERR)] SRRk KRR J2_ %,
* NXTOP * «*_ IS *,
O A B M YES .* THIS A *o
* SCAN *Xeooooosaa¥, KEYWORD ok
:STANBARD VALUE : .:ARAHETE‘R.'
R SRRk R
. * NO
. .
X .
AR .
* * .
* F2 *x PROB X
* * A A 2 AR K
ek LOGKUP *
W A B B e B B R B
* GENERATE *
* POINTER AND ¥
0PERAND RECURDS#
ARRESEAREARARK RS
Chart 05. IETE3A

Flowcharts

47

PIVOT

bR L FREEL RS 2 L 0 Y
* *
* E4pP *
* *

A2 22t E R E2 S L L2]

Rk R R B Rk
* *
\ 4 *

AT &
ALUE*
G *
HhRkK

* T
*COMMI
*ASSE
* QF

L Ll

*

T

R

A

0

S

LELd *

S
MPORAR
N SE
BL v
*SYSRE
Ll 2L b

*

Mo oot b s RLMBDOMPXe 600 00

FRRERCTERRR R R R
* GETMAIN *
K e e e R
GET STRG RANGE-
* COMMON

+ 1024 *
*COMMCN + 65535 %
LR RS SRR e L

.

X
3R RDIR R R RERKE
* MOVE *
* ASSEMALED %
* COMMON TO *
* ACQUIRED *
* STORAGE AREA %
(RS EE 02 2R 222 213

:

MV4 X

RN RE JRRR R RTEK

* SET NEW

* COMMON BASE *

*REGISTER STORE #
170 ENTRY *
VECTOR *

PRI R LRI SR L L 212 g

:

X
*REERE IR RRRERRE
* SET_GLOBAL *
* DICTIONARY *
* ORIGIN AT _*
COMMON END PLUS®
EEST TR L 22T T Y

.

:

X
AR RGIRERRERRR R R
COMPUTE NUMBER +
* OF DICTIONARY_ *
BLOCKS THAT FIT
*INTO_REMAINDER *
* CORE %
ELE 2R P22 22 2 22 %

.

:

.

X
kRS RHIRE R R PR RERE

ASSIGN *
* GLUBAL/LOCAL #
* 'DICTIONARY *
% BLOCKS IN A *
* RATIO OF 2/3 %
LR T PR L L PR RSt L]
:
ASGN2 X
FEEED JIRERRRRRER R
*INITIALIZE 1/0 =
BUFFER QRIGINS,
* DIRECTOR
#ORIGINS, AND HT
* ORTGINS
REREREEERREREREE K
Chart 06. IETE4P

48

tt*t*aktt*t#tttt:
NITIALIZE *

* 1
...X:BLUCK POINTERS *

R R I NN WA WA A A I

€ 5 658 688800386088 0060658080000 000000080800 80080ssIEssrsecsoestivasstratonie

CLR&4T

: AND HEADERS *
PRt L 2 a2 222l bt

*

e oo e

beaa s Le Pl DL L

CLEAR *
* GLOBAL AND *
* LOCAL *
:DICTIUNARV HASH*

TABLES
ARk

e v ase

t#*tcht#'ttt##t:
*

* SET *
*PHASE ENTRANCE *
* CODE TO O *

*®
SRk Rk A ROk ok

We s s e

RREREL REERRE R
* *
* XCTL TD PHASE :

AEEREERREREER N

kR A2 Rk R Ak

* *
* E4M *
* *
EREEEERRBERR AR et
*07 *
* B3%
LT . * X
* *
* B2 ¥ X. -
Rk X X
o ¥, NXTGRP ¥,
utnmnu**#n* g2, B3 #.
% ok *. .nu
* SET ERROR * 2 W%) NO
* CCCE QOF GD *X........* ENTRANCE CC\DE *.-...-..Xﬁ. END FLAG UN .*........
* OVERFLOW *, ¥
* * *, o “x, ok AR K AR
B T e . . -, *08 %
. * 1 * YES * Bl*
. . . * ®
. - - *
- X X
ASYB X SSRTN ¥ Mocsus o ¥,
ok ok C] 2K Rk R K c2 *, c3 ll. AR 4 KA AR A
® <% OPEN . ¥ * *
* CUTPUT ERROR % o CODE *, YES END *, NO * FLUSH *
* RECORD SET * *, TRANSIENT o*eaae .OF OPEN CODE e¥eoveeoeeX* QUT ET FILE *
* ABDRT FLAG * o GENERAL % . * BUFFER *
* * *,CICT % . “#. .* *
LR X, o ¥ . *, oF Aok R R R
. * NO - * YES -
. X « MOC2 X X
X kR Ok 2 A KKk AR AR . L EDET R Ak KR ADL kKRR AR
AR D] Aok ok ok X * ENTODCT . * * * *
* oo o o o o e B B K B *RESEY END FLAG * * SET ET *
* XCTL TO ES5P % * RE-ENTER . *¥SET SWITCH REG *Xeeseeseo®* FLAG FOR OPEN *
* * * UPCATED MACRO * - * FCR OPEN CDDE * * CODE *
3ok ko Aok ok ok ENTRY . * * * *
ELET PR B P T . 2otk AR AR Rk K EE L e T
- . .
eXeossanovenis -
. .
. X
DCL8 X DCLOSE o¥a DCL4
***t*&?*t*t##**#* 3 x, AR K 4 AR ARk K
**** * SET - *o WR|
GLOBALS # <% ENOUGH *, NO Kk K R K
* B2 *X....*INACTIVE._ REST % *.SPACE FOR ENDe*s00c0veeX WRITE OQUT
TA PCINTERS AND#* *. FLAG ok *CURRENT DICT =*
**** CCOUNTERS * *, ¥ BLOCK
LR R PR o e *, ok ARk K A oKk
* YES .
. .
eXeosesavsscseccnscescncnne

oeL3 X
EAE LIRS T SEEE 23
* p

* INSERT *
*END FLAG IN GD *
* B8LOCK *

*
ek ok ok o ok Kok ok
:
§
ok K40k K G 3R kR kok KR Kok ok
WRNOTE
K o o K e W K
WRITE OUT THE
* LAST DICT. *
BLOCK
Nk ok ok kKRR
.
X
DCLé R
l'HB '.' .‘*“Hk*#“##t*#*
%" END *. NO CLEAR :
*1 OF ASSEMBLY .m........x*rcn HASH TABLE &
*e TEXT .
. o .
., ¥ '*‘*‘#‘##‘**t##'#
*“YES .
. :
SSPGOD X SSTGD X
EE I NEE RS IS L2) Ak kR) 4k ok ok ok ko
* * *
* SET * * SET *
* LINK REGISTER # * LINK REGISTER *
* * * L
* * * *
LRSI ELE ST E 22T 20 ok koo Rk ok kK
Xeseeeasssassssncacanannan
X
Aokl kK 3k ok ok kR K
*
* XCTL 7O E4s %
Ak ok kR ok ok

Chart 07. IETE4M

Flowcharts 49

Chart 08.

50

IETE4M

¥,
Bl *,

.,
*

¥

v x.

o ¥ BRANCH ON'*.

“%.0PERATION.*"
* *

15
RAERA KA RERAR AR RS

BRRITE
SOURCE #%k—%—B—K—R—k-k~d ¥
ecsssseX WRITE SOURCE sevescas
* Sy *

SUT1 X
et
EXAERREARE XA A *07 *
* B3%

* ¥

*

cssessn s

ROQ

FRERER2ARRRRRR AN

TERROR #¥—ho ok e ek

esesseeX WRITE ERR?R(S) sevsscns
* sSYSur Ld

X

-

- Rk

. LR RIS EL R L2 2 *07 %

. * B3*

- * *

. *

.

. RZE17 ¥ RZEgb

. *, - HARHC IR RN

- o* . * *

«MACH. ok *. YES * PROCESS *
weeence XK OPERAND LIST o%ecccecsoX® OPERANDS FOR ¥

. . CORD ¥ * DICTIONARY *

«INSTR. *. o* * ENTRIES *

- *, . L ST DL LT Lol i

- * NO -

- . RZELS X

. . ttttttnat:‘#t*#t#tt

. -

. . LR B e DS et 20 BT L]

- ssescscsccessseseX WR TF csccsves

- * EDITED TEXT * X

. b
. AR RE SR HERAE *07 _*
- t*aaﬁ
. *

R16
FRERRE2RRRERRRRRE
* GET POINTER *
LCBAL * RECQRD AND *
sssesX¥ ENTER ¥eseescns
«LOCAL *DECLARATICNS IN%* X
. * CICTIONARY _ * *AEAA
o AREERRERAE SRR E *07 *
- * B3x
. * *
. *
. AEEXFF2AEBARBERRR
. * PROCESS *
. * NAME AND *
essnveeX® OPERANDS FOR *ccecvses
«MACRG * DICTIONARY * X
«INSTR. * ENTRIES * bl
- BEAEHRERRE AR R A #07_*
. * B3¥
- * %
- *
-
. 0A
. ARG ERRARRAKER
*

TEND * CLEAR *
leceeeeXt OUTBUFFERS Heweeensg

* *
AR EER KRR AR RRRR K *07 *

(XX XZT RS [3222 FHBERA N
* * * x # * 0 >W »
* < * * -G * aZz *
#* uwC> * * UL Z O # 00— %
* X * #O— *-ZTZ
FXAC * * C~ O% * w2 #
Fi SCOR *a Zu # *2OW O »
#>EEDui X NLNOE *D—— %
#CO Da# 8 0 IXRZOADZE o v 2 X¥ AL ¥
#OXWDO* * OX =a RLO— %
Nl i OG- N 00
QA VR L ZuddR OEC = #
* aIX * HOZw O *LWZED *
* NETC ¥ Rl AOR il 4 *
~EZOZ % XARZIIE * w> #
- » * C=" * * Qo *
A2 E AR L2 22 2 222 #‘t.l-‘t‘
o x
w . .
- . .
. .
. .
. .
e .
We .
> >
* L3S ALEE 3 420 0.4.2 1 ARERNRN L3222 2 2] HRRERER *nn
.0 E et * * o #* * * * | * * * * *
* _® *0=0 * * - * -4 * % 200 ¥ ® = b3 * W #
O o 4 * 2 * Ok % * JWZ # * W o * no®
U » #QWZZ>% * (<R3 * QALO ¥ * B ¥ * - »* * < »
OV~ ¢ O »* [23 * > » * N = *)2 #* * w * *# I %
09O #Z #XO-ZIH * ZH # * ZaOZH #oXE = % * -4 * o _#
LN . #OOCZH * WU * * Lot FO) IS * O * * X
~— # 0 XHUL =EOR ¢ 0 aXE FNZ K 0o oXE WUER s 00 XBULRXOUWE ¢ 00 0 0 o WW # o0 00 o XE OIH
Z w e * wWog—E * owo # * LSOD¥ tE#OBRt * Nx * * FWwE
W exX ¥ FOZ Wit * Tl # ¥+ 04 O TR ODAH <+ * < *
Q=< o DO~Oa W* o ak- # QO ek Wil # 'S [» [L e
ROVZH * * - * XV » * R » » - » * - #
« —e #EDOZO® * v o* * ZO * W * * X ¥ * Q®
~+ L I=1] #WOC= # * (=2 (3.4 -~ * * RO # » w * * X *
- e E*NXE # * 9.4 — * * Uil * * * * »*
M H LA L L 2 24 RERRRERR M‘titt*t T2 T 2] FRRRRR - * %N
v . n <
- . - w
LRI SO B B BN BT B L O L L A B B A I I R A A A A I I B A A I R A N R N N N N NN NN NN AR
.
.
.
o>
Z »
* % * L33 A2 22 a2l 20 4 REERRER LA AL L X] * * Li g AL R) * * »
» * W » * O * * T » * » T - * W * .. ETH ®
#* # NO * * W - % *#00 * * - * oi1xe * W * #* X » - *<l P~ #*
(T 3 * = * * - O & *orx * * LZIL® XE ST * o * * <€ O * WX AXE O #
#UD-OD # ® A_> » * e B #CLO> » Ul e | O ¥ [=] * #O0ZT WrE #xd # OV U | e
* * ZXL #* * 000 # *0 X » #WOO OF * O % (T2 od » N —c % ¢ QZW ¢ W * #XO#
*#0d _NCH * >OCH * Wor x¥ *TW LxX# * - wa® | b= % PN W *#ZA <N * O0r %> # W D%
#OZTZT WU RWCEZUR * wLOows DT Z W #* Do u. i * N0k # W~ & * CTUZH * o * RHZTUANK
% 00 IXRHNO=IQN ¢ ¢ IXRADCIOOR ¢ ¢ X O OR ¢ ¢ oX¥JOOOR o0 ¢ IXRAWUOOLH ¢ 00 ¢ 0 0 e D o0 ¢ OXHIUWTD # 00000 0XHWOONOR ¢ ¢ ¢ ¢ oXH L - # o000 ex® | O>®
* = ¥ EOQZOmqR ® N AR *NAT—a® #ED — * W bR QoW ¥ » gL X e DX e %* #W R
00 k=D % OTOV-WH 0 ZRZWe 0 A WE MOQENNI=* LW NZO> * OOXEW D% ¢ M We % Al #
qO0W I e 0 - QI * o WO I oW OUI#* WOUOX O* Wit NN S D # T R . - xXQO » S ot i el O
—-0c #* * X R * WX * *PEOm * » ZOOQ™® *$U OD * o * #NT | e . *0O % *U) XO-®
*OQN * * 00O * * > X % #0m= O * * OZOo* ac#aCDOR - * - ZO¥ . XU o *NRE W
* ¥ = * * O Q » *XTO * » - * = W= o » %* = 3 * . *0O% *#Nl D *
» ¥ Ou # * T O # * < * * @ # anan * * = » . . XX *
(22 22 2 2 3 “l*‘t*“ L2 22 22 2) W N T AN * * E2 2222 2] . * ” »*
. .
1%} . .
- . .
treessessererssaerare
N R LA A AR 2 3 RERBERNE * (222 232] (a2 2 8802 L3 A S A 2] *
* *0 * * a » * | * T # * Lo * * | < » *my * hahd
* *h= > » * 94 W % * ¥ O » olx » » v * * #* W * *IR > % * *®
*d * X * * Wt # tSF Zz ® X JET * * Qx * * } X * chKHNt . .
* LD *XONA * * XZI * *» - "R » * e >® * % < & U QI * > *
#OXZ * NZ * * W » #X W * *® £ B # OV U 0¥ * 1 » * 10Z # . ® _»
* O #O>WQNH » D= FURL- * | 3 *#ZC_ Q4CH R AO * * #JOO* * <z *
* dZp * Z ol # * X ® * | Oua L L <-3 #IEZE T *WI<Z # * | @man ¢ W Zax e
R OF® 000 XEmOO—UH 8 0 XRWIZT # 000 X% HONIE s 00 v e 0 1% o0 o oXH OXO¥ v 000 e eXHANRU- # 00009 eXE # Lk oo oXd QAULOCD
o il * =QOO% %*N0CZT * #xX i Dxw # QN R % =IO D | i * x * et) O o O e
N O N ZXO * NO#~-Dd# N | U= NWEU O N O- # o Rl # N =l *
LWNOD LUOW QE% Q rapn # WO W * W QIR GO0 JUR T 1 o o* . U | NO® x Qx
* D% * xa # » - L1 R *wiO ® * D ¥ x v oa ¢ ENRD O * -
#NONE i, I 4 * O0.ZU #* *Wl x # #orEaU * * NE O% * I @ * . £@ 1 JWIoW * Qe
- R % #WAZO * »* D % *OR O # ¥ WO * ® a # * % D * o NEDRNODR * »
w o * *n * » o % * L # LN XR * Z ® 1 O * v =R * ’e
” .-.V‘A‘ LA 2 22 L2) LA 21 22 2) RREERRER * ® ERERERR W RN . N*““‘# *
. ' .
I . * ¢ n Ox »
- . . - O
. . ==
- . Za e
< . wao e
e . .
Oe . .
- . * x
* % w * ERERR SR www RN RR % . * *
* *e * * »* * * * . * TR
* * - * »* * * * * . #01O> #
* . . < * * * * #* o » M * X ¥ OXMR
> % * O * @ * Lt ol 4 * v o* * B » . U | IR
Z# oW e O * Zx # * o * * W » . * . RDZON
WS L L | * g % * 0w % * * . * 1 Ok
Zi= ¢ qY e O ¥ WZZ ¥ * W= * . O . LR Totat el
FWO-® o 0 0XH DOWOU # ¢ oX® OO ¥ o v oX® =l % 000 ook - * Sesscssesers s iR |XFNR
I * Dd oD * DE= #* * —ZX * - » * RWO
g% ~d O - Do * - * - | ZER
ALOD* DOXL . O wy * Q X % W # X% QO*
* Qe #Om * * Q= * »* < * » QO * U D W
QAN e Q. » a * o » * X ® o Tu U R
» * #* * * * * * » WO #*
* Q .o - * » * * * — R
* %% 1] * W R LA 222 X2 * %% wE %
«n o
<+ [
w -

51

Flowcharts

IETE4S

Chart 09.

IETESP
LI R TRER IS 20
: PHASE ESP E
SREERR SRR RRRDRR

Xe s oo s

USEBAS
hbdabdd LS L L S22 1

*

* INITIALIZE
* (0 HHON /
* FFE
*
-

EZ XX T

RE I LSS R 2L 222 2

xR RACIR
RE

* AIN
110

‘ SYS
ARERSRRRRERRA

X
 thhad L]
AD

L INE *
NARIES
utT3 *

*RRXFDIAS
* INITI
* GLOBA

LOCAL
* DICTIONARIES

AEFEREEEFRRRRERRR

X
trarannay
A
L

RERR

®¥Xe o a0

- ..

.EB FREREL RREE SR REE

«* ABNORM AL -. YES * *

*. TERHIN TIO .t.-......x: TO PHASE ESE :
" Y LRI SRR T Il 2]

, .
NO

e res e @

R ERFIFER RS
* *
: TO PHASE €5 :

AR 2RSS 2 22 2

Chart 10. IETESP

52

IETES
A A2 RN kK
* PHASE ES :
RN AR AR

#Xo e 00 00

. ¥,

B2 *, 83 *, HRAEED LR KRR KRR

¥ *, ¥ *g * *

¥ *, YES ¥ *. YES * *
, RETURN FROM e¥ceenoosoX¥oERROR RETURN o¥.ceeeoesX¥ PROCESS ERROR *
"4. ESA *.* *.* ‘.* * RETURN *

* *
e ¥ Aok Rk R AR
* NO

-

Z*
o

Xe o600 ¥

iR Wi RS EEELEE T
* *

* PHASE *
:lNlTlAL[lATlDN :

* *
Aol ook ok K okok ok ok
.

b I I R S S P S
R R R

Xeooeooeossesecoccasassossecsscvoacscecssscscsseone

* b
* =
BDNEXe eI res et ss s

Chart 11. IETES

Flowcharts 53

®]12 *
" Al
* %
*
'.'x.....................................).(.........................i..........................
x . . .
FTYICIIYSE SRS £ 222 4 20 - - :
: :

* » - - -
READ TEXT FILE : : :
* * - . .

FTYIZEI SIS L2 24 4 . . .
. : . .
. - . T

M : .

X . . .

Bl" . . : :
o . : : :

. . : . :

*. STATEMENT L : . :

.0 TYPE o : : :

..
o . : : :
* - - -
. : : :
. : : :
: : : .
: : . :
: : : :
: SOURCE : . .
- EEERRFC2 MR Rk ER RS - - .
ZSOURCE, ERROR * WRITE : : .
reeeccarssneseaseX TEXT_GN veen : :
. * SYSUT2 * : :
. EARRBRERRRAEE . :
: : :
: SETST : :
- RN ED2 R RERKRERR N EERDINAERRRERRE - -
. * * * A * . .
3 * EVALUATE NAME » N TS T T :
B 2] cevanns . .
e o vatyy seeeee XY oBERUNG Eno R :
: * sToRE REsOLT = & :
- FREEE R R RBEREE l* ‘l“‘*“#"*l‘ - -
. : :
. . :
: : :
: CSECT : :
- ““'EZ"“*“*‘# FREAAEE J R Rk Rk . -
SCSECT * . :
SOSECT M » . WRITE . o :
fecciesesnssceaceK¥® SAVE NAME *iceeeeesX TEXT_ON caes :
: + * « sysut2 o+ "X :
: ETEES ISR LS L E 2T PRSI LS L L L] : :
: . :
: : :
: AIFST
. :tn#rzutuuua S, : :
SAIF ALUATE »" % ‘. NO o .
.................xtm YRERELS 1on t........xt. EXPR 331oN -"'"i .
. : . . . :
- ““.““#‘.l‘t#i e % . -
: *°YES : :
: : : :
. AGOST X . .
. "i#‘GB‘#*#.".#‘ - °
YY) : .
...xt POSITON TEXT .00 :
. .
- * -
- RARRFERERRR KRR KEE o
: :
: MENDST o*, .
. H2 t. t\nttuatttt#vﬂt* AR R H Gk kKK .
SHEND o . * POSITIO *
SMEXIT o0 EXIT_Tw. YES H ¥ TEXTEILETO 2 -
feeeeececssassasaX¥e FRON CUTER .t........x- Texy F%LE- Berecaensk® REA *o.at
: . MA ox F A * DIsCORTINUED *
- . - ‘ * - * TEXT *
. B, o F PR R R i 22 2t] - EE3 SR SR E 22 s
: *"NO :
: Ceesesescessesesascssecaccssacsscsasne
: MINSTR ENDMI
- SRR EER J2 R RRRRRRKE ‘."*JB*“."."' Ak J & ok ok ok ok ok
TMACRO * ” *+ POSITION TEXT % R R SRR
TINSTR. * WRITE * * INOTE* L * * *
CeevecsescssasseeX SOURCE ON weveewssX® DISCONTINUED t........x- BEGINNING OF ¥..eo...oXSCALL PHASE ESA %
. * Csysut2 * * TEXT * R * * *
- * * STRUCTION * Ao kR R AR AR
- RERREREERREES SRBRIR N ERREERRREE ‘."#“**'l““##
.
:
: RARERAK 2RSSR AR RFEE
. ARRAKIBRREREERE
“END . WRITE * .
eeersesecoeanaaX’ BUEFERS ON mecescesXSCALL PHASE MAC *
+ o sysutz. = * pe
ELTR22 AT LT LT L2]
BER SRR R R KRR

Chart 12. IETES

54

LETESA
BENRAT R R RNk
5 PHASE ES5A s
R R 2SR 2 212 £ 21 3

-

e s o000

BEGMAC
HRAH KB IR R AR ARk
A
MACRO
DICT IONARY
* SYSUT3
EELERL DL LS 2)

Xe s 0880 RCTO~DENXe 00000

PROTOL
e R DERREEE RS L 2]
*

* BUILD *
:PARAHETEﬁ TABLE:

* *
LA LS S E L 22 22 d

CALL

Xe s o0 e

Rk E Aok kRok

*
* PHASE ES *
HEXAREIRRARE IR K

Chart 13. IETESA

Flowcharts 55

Chart 14.

56

1ETESE
LES LY VLI L L 21]
* »*
* PHASE ESE *
* *
LR ERL I 22222 2]

¥
STARTS
SRR ERRP2E RSB AR RER R

* *
READ SYSUT1
* *

LR ERE RSS2 T £ 2 2)

#Xe s 000

.
*,
o *

STTYPE .
c2

. ‘. YES
#.SOURCE RECORDI¥euieeceianecnccnns

*, o®
LE
NO

#Xe s 0 B

02" "*.

SOURC
=k
*

e

E
X IDIHREREBRRREE

.* “x. VES .
#2ERRCR RECORD s*ecseseeeX WRITE SYSUT2
*, ¥ L *

PR EEE
By
Z®
=y
*

m

N
*

.

¥ *,
*
*e YEND®
-, .

*, %
*, %
YES

SO

ENOST (
EENERSF2AEERRNETERS

* *
WRITE SYSUT2
* *

EES RS 22 2 22 2 L]

> {J

ARERC2RAEERRRRE
*

:RETUHN T0 PHASE:
ERI SRS 2SS 2 222 23

IETESE

E2 2 2]
*

*, NO *
e¥oeeeX® B2 *
® *

LE 23]

ENFSERPRRR N

A AR A 2 Ak kK ko

*
: ENTER VALUAT *.-......X: INITIALIZE

KRR R Rk

*ohkk

ADvOP
tllttultttt*##tt:
*

* ADVANCE *

:GPR POITIER 8y *

*
WA A Ak kR

rbk M
*AA * L
* Fl *.X.
w0]

*n
s sseseseasases s

ok
ADVINP b

HRNRRE | Fkk kR kkkk
* *
* *
* ADVANCE INPUT *
s " PTR BY 1 *
*

*

*

R RS L2 2E 4 2T
-
.
-

X
LEL L]
* *
* B3 %
* *
L e s L]

Chart AA. Phase E5 VALUAT Routine

b de b ER L2 22 2 5 2]
* *

*

*

*

* *

LA 2 2 LAt Rt 2 2]
ek -
*AA * -
* B3 *,X.
* L] -
b X
SYMBL ¥,

CHFORC .
Cc3

LSt
FORCE o ok,

secnscccssoasssnstocscence

DOOPR

. *,
«% INPUT PTR *. YES

*. OUTSIDE
* . OPERATOR %
*RANGE . *

NO

#e s 00 3 2
(3}

o* *,
. *,
*o. INPUT PTR %
*x, *

.
-k
*

*AA % «AND
: D3 #.X.0THER

ok

s ®AT
*FORCE
*IN
*. .

K, ok

*, o
*
NO

Mo s oo ¥

:t**lFJtltt#ttt‘:
*

* FETCH ADDRESS *
* OF OPERANDS A *
: AND B8 *

*.
R *, YES
IST Ac®eeaescaoX®
* *

*
L L
.
.
X
¥,
G3 *,
o *.
% IS FORCED *. NO
. e¥eseesses
.SUBSCRIPT.
* 0 _.* kKK
*, % *AB *
* YES * Fl%
. * ¥
.
.
.
SUBSC X
ROk ARH 3 KRRk kR
* *
* INCREMENT *
*INPUT PIK PAST =
* *
* *
Aok RO
.
.
.
X
ke
J3 *,
ox_ IS -
« ¥ THIS A *, YES
*SUBSCRIPTED SET#*eeccesees
,VARTABLE . X
. o ot
LIS *AB *
* NO * Bl
. * &
- *
.
X
b LI T2 Y
*

* GET VALUE =
* FROM PARAM *
* TABLE - ¥

R LA 222 LT 12T

PR A TR 2L 22 L]
RETURN
N ookl ok oK Kok

R PR Y E Y PR TR R RN TR

*
*

CRELATIDNAL
«1JPR.

X
*RkkEDSKERRREE B RE
* *

*INITIALIZE REG *
G WITH ADORESS #
:GF STRING AREA :
Aok ok ok ROk 3 Kok ok Rk

X
LA ERIE R 2L EE L
* *
* INITIALIZE *
* PUTST Sw TO =
* TOFF »*
* *
R ROk ok

Flowcharts

57

Chart AB.

58

METB4 ok,
*, ttA;t###t#t
* t CPTR t
SETB Is *, NO =B -'—
messseX ¥, IT A CHAR .*.....-..X*INITIALIZE FOR LIRS
« EXPR ok X
RERE . . . K
*AA ¥ - *, ok AR S RERERE *AA %
* B1* - * YES * B3#*
. % - . * %
* . . *
. . cceessssessassssessstssscesesrasessessceracscsrsrneoe
X . -
PL - METC4 .
Bl #*. . FE R RB2 KRR R RAK *HB IRRAREEK .
ok *, - * ‘ t lNC TR * .
* *, o SETC * FETCH * ¥ F—k—dkd—¥— % .
*, SET TYPE e¥eaoseoacX® LENGTH OF ‘-.-.-...XilN[TlAL%ﬁE FOR *........ .
.. . . » STRING X M
*, o . kA .
*, .k . AR AR AR AR AR FEERRRERERE *AA % .
* . * B3*x -
- * % -
- * .
M META3 o, X
. . tu:tcaut"ttut n(«nnmn
-* *, * * ABCD
SETA % 1S *., YES * PR~ LN
ceeceaX ‘. IT A CHAR-.X* FETCH BINARY ‘........X'CUNVERT BINARY *oennason
- EXPR ¥ WORD * tC IMAL X
. o t * FAEEE
. o* AR FEERRRER R RS tnmuwuu *AA %
* NO * E5%
. * %
. *
. META2
. #HD3RARAERE u*ttot,uuutnt
. * [NCPTR *
- ot dut s ks e STORE VALUE "
.................x#lN”’IALIZE FOR *........K‘ lNT(] INTERME~ *.000c0ae
NTR IATE RESULT * X
g
ARERRRRRERE AR AR KR *AA %
* B3%
* *
*
RELAT RE
untezaxnnnuzum AXEHRE IRRRERERRRN
*
RELATIONAL*FETCH CUNDITI(‘N‘ INCREMENT *
* CODE FORX‘ INTERNEDIATE ¥esessons
RELATIONAL * ESULT * X
A . * GPERATOR t * EakER
»AB % . P T T P Aok R Rk *AA *
* Fl* - * B3%
- * - * x
* - *
X -
DOCPR1 ¥, -
Fl . . tntt;ztu"uttt
o .. . *
o* *.LOGICAL * INITIALIZE
*., FORCED OPR---..X‘ EGISTER & HITH'..-.....
*, TEST - » ADOR OF STRING * X
w . - AREA ONE bt
*. o . P e e T T AN 4
- * D3%
. * %
- -
. EREREGTRARRERERER
. *
. PLUS * PERFORM *
- -......X: ADDITION ¥oaeeoe
. - ARRER R AR
- AR1TOP ke - SUBTR
. H *, . R AR KHIRRERE ARRER
. ¥ *, -
ARITHMETIC .* SPECIFIC *, - * PERFORM
ecesessX¥, OPEKATIUN . --...X: SUBTRACTION :...-
-, ok . * * .
. . . ERRF R RRRRRE KRR .
* - -
- MULTY -
. PR LT ENEE P T .
- * * -
¥ * PERFORM * -
.......X:HULTIPLICATIDN :....X.
- * * -
. HRR AR R E AR RAAEE .
. -
- Div «CONTIN
. P RS TP A T . P T T
. * * o * *
. * RFORM * X * STORE
csecese XX DlVlSlGN Foenonsae XX RESULT IN ¥eaoesens
* x * RESULT LIST = X
* * * - P T
HREKARRARRARERREE P T Y T *AA %
* 3%
* &
*

Phase E5 VALUAT Routine

AREKE Liddd
*AC * * *
* Al® * A2 *
% * *
* Rt L]
. .
. .
X .
NCTOPR ¥, X
AlT Tx, AR A2k Rk
o *, * SET -
«* OUTSIDE *. YES * END OF *
*, RANGE OF e¥esesseseX® EXPRESSION *
o FLAGS % #FLAGS_IN OPER. *
*o - * TABLE
X ¥ PR TR et Tt 22
* NO .
. . kEkE
. . *AA
- eeX* E3 *
. ey
X
SRR D LR
* *
* *
*REDUCE FLAG TO *
: BASE D *
o ook ook Ok Rk Rk Rk
. P
- *AC *
. * C2 %...0
. * .
X Py .
¥, CHARST X
Cl *, RRC2HRRRERR
¥ *, * uTS *
. . L e s a2
, FLAG TEST . * PUT STRING %eaveo
- ¥ * [N STRING
*, o * AREA
.o EREB RN
.
.
.
.
.
.
.
.
X
HRRRRKRE R
* *
* *
* TYPE BRANCH TO *
* *
* *
: CHAR SELF OEF. VALUE A3 :
: HEX-DEC-BIN SELF DEF. VALUE B3 :
* SETA D3 *
* *
: SETB/SETC D4 :
: BEGIN SUBSTRING ES :
: SUBSTRING (G5 :
: SUBSTRING) cs :
: SUBSTRING cs :
: PARENTHESIS (TRUE CHARACTER) A2 :
: ARITH EXPRESSICON G5 :
: PARAMETER ATTRIBUTE L* F3 :
: PARAMETER ATTRIBUTE I°* F4 :
: PARAMETER ATTRIBUTE S* G3 :
: PARAMETER ATTRIBUTE N! J3 :
: PARAMETER ATTRIBUTE T* J95 :
: PARAMETER ATTRIBUTE K°* B4 :
: SYSLIST A4 :
: PARAMETER A5 :
: CHARACTER STRING c2 :
* NULL AA-E) *
* *
* BLANK A2 *
* -
* COMMA A2 *
* *
TR R T
Chart AC. Phase E5 VALUAT Routine

cso SYSLST
Rk EEA R R R R RRKEE s ok A 4 Aok kol R ok R
* * * STORE PARAM #
* TRANSLATE_ * * FLAG_TO *
*CHAR STRING TO * * SIMULATE A #*
* T ORIG SET * * PARAMETER *
kbR Rk Aok ok kKRR kxR kR
. .
. .
.
.
DECINT X ' ATTPAR %
:““B3¥‘*““*“ *'84#‘*"‘..
* STORE . * CHECK *
ADDR OF DECIMAL * FOR PARAMETER *
: VALUE * '. ‘*
ook K ok ok Rk ok ok kR
. .
ceesssccsedXy .
X
rRkRE Le il 2]
*AA * *AA *
* E3% * D1*
x X * ¥
*
META METB/METC
* kD) 3 eARRRK Ak D)4 koK kR
* METINT - *® METINT *
o e i e e A e R e N
*, INITIALIZE * INITIALIZE _#
R SE * * FOR SET #
RIABLE * VARIABLE *
Ak R ok ES 222 o222 2 d
: :
< .
X X
EEE L] koo
* » AL *
* C2 * * B3#*
* * * X
¥ *
LATTBT 1ATTBT
HAF R beRkR RREHhokkkkkE
« ATTPA * * ATTPAR _ *
K e B e R R W 2 e R
* CHECK FOR ®.eeeee * CHECK FOR #
*, PARAMETER _« . *, PARAMETER s«
EEE L E22 2 2 22] : EE 1T 2L 232]
N :
P
.
SATTBT .
REGIhEEREKE -
*
PR e Sk i Y M
* CHECK FOR *eeeeceocccssvsceesXe
* FPARAMETER * .
P —— .
R EE :
*AC * o
* He *,X.
* .
e .
PACK3 X
R EHG MRk RR R
*
* STORE RESULT *
* " ADDR. *
* POINTER LIST *
ok kR R kR Rk
T
T RAA
.X® B3 *
* .
it 1]
NATTBT
AR IRRRRRKR

* ATTPAR *
B e 2 e e M

CHECK FOR
l‘.PARAMETER ‘*
PRI EL Dl d A

* *

PARMTR
TR RAS ARk AR
* *
* STCRE PARAM *
* £ AND *
:ND.!NTD ?nlNTER:

LIST
PRI T RS PL s ST Il
.
.
.
-
.

Xevacaosscasaccscnnsvenne

BEND
AR Rk kRl

»

ET SUBSTRING #

S
COMMA OR LEFT *
PAREN SWITCH :

N
*
-
*
*
*
*
Aodoko ok ARk AR Rk

BEGSUB
HRAKRE S KRk R R kA
*

STNRE
LENGTH NF
STRING

[E XX 2
EX 22

R OB KRR Rk

EEEE
*AA =
* F1x
* %
*
SETARE
P L L
* -

* SET *
:AR[THHETIC HODE:

* *
PRI ISR e R R L L T
-

.

X
kR
*AA *

* E1%

* %

*

TATTBY
R YE R RE R

CHECK FOR *
*' PARAMETER “
LRI RS LSS L L]

Flowcharts

59

‘OtttCl*;tt##tttt
*
-‘-Q-' E 2 ‘—‘—‘

SRR RA2RRRR ARk
* *
Lah ot 2t SE S B SR 22]
* *
: INITIALIZE :
LE R S RS B a2 2L

teeesssccsssssassscesssacXe

'#.‘t'BZ‘;“‘.‘!#*‘
LN T R)
* NEXT RECORD *
EERBRERRRAEEY

R

AXs s e o0

cz2 *.
¥ ‘.

NO
b T N ALL PROCESSED.

‘PROCESS RECORD *

t“‘*‘#‘i*#*‘!***

Chart 15.

60

o
. o
YES

Y .
TERALSe#escscecosnssosocasssarreacnnnk
"

*

YES

e . #

t*#t#ez#*tlltittt
PU

'-# - l—#-‘—‘—‘ :
Py

t csECT SAME'as ¥

157 »

#‘#t't“‘lt****t‘

>ees e

AR D R RERRR S RRA
* T *
PO TS Bias et B
- *
: PROCESS IT :
HREERRERER IR REREE

e b e 00

A RAG 2Rk A AR
* PUTREC *
P a4
* PUT_DUMMY *
* ORG * *

* *
Aok AR Rk Rk

Mo 8000

BRRRAH2ERRRARESRK
* *
et D DTS AT B S)
* *
: PROCESS IT »
BEARERREREREE RS RK

e 0000

P NP T 1]
* PUTRE »
A e K e W B
- *
:PUY DUMMY LTURG:
HEAENREER R RER KK

S LI A

ERRAK2EEEREAEEER
* T *
He e o K N B
» *
: PROCESS IT :
AR EERERER TR

-
esssescscscsssesscsessversorerssrsesassanew

IET07/07A/07B

scscsccsccsce

D I R R I R R N R O R N N T R R R I I R R R N R N R R I R R N R R R R N P S R R R I R R N R N R R R R N R N N R N N R R U

PHCD

PHCG

.*lt‘AAtgittl#ttt
SET_NE
INPUT BLK
FACTOR

ok Aok R R R

X2 X 2)
%%

Xe e a0

P Ve e L T
H
L A N = 1]
WRITE
* EOD RECORD *
P e T

PO

‘t'ttc4tt8!#‘t#*l

LOGICAL
*REH[ND TEXT DUT.
FILE

i
Aok oo Aok o ok ok ok ok

#0000

D4
¥
. SVMBOLETIS
:

#. SEGMT
*.EMPTY. %
¥

“%"NO

‘.
*o

e s

PRI E ST LET L 22
* WRITE SLS *

Aok ko Rk
-

eXeosoesosns

X
[TR e
* *
* SET *
* 18T BLOCK *
: POINTER :
P e T T

.

.

x
REEREGLEENRRRRREK
* *®

* *
* SETUP_TO CALL *
* E7I *

L d ®
Aok ok kR ok Rk kK
.

-

-

.

YES

.#u.....-...........

B
2 oy
E5 *o
o% . ANY %,
«* PREVINUS _*,
SYMRIL LIST %
.SEGMENTS o#
*. ok
Ko ok
* NO
X
ok iR okl ik koK ok
*
* CLEAR SYMsOL *
* LIST TABLE *
: POINTER :
ook ook o okoR ok e g g ok ok koK
X
ok kG S kR dokkedok Kol
* *

* *
* SETUP TN CALL *
* EB *

*

Aok kR adoRoK ook ok
-
-
.

eXeooovsososesnesssccscascnce

e
X
fahadd LRl S L ELEE 2]
* *
* *
*EXCHANGE RDD & *
* WOD BUFS *

*
R I 22 22 R 222 it

Xe s oo

AR G kAR AR
T *

: PHASE (E71 OR :

AR

Chart 16.

BAAKAL SRR RN
* ENTER TEXTCE
AR AR RO

IET07/07A/07B

¥oseeeesoX¥
* *

AR A2KAR R AR
* JHARKCE

AVE
STATEMENT
POINTER
Ea R L il 2

Fxs 00

oXe
B2 *.
* *

iy “%. NG
#IBROCESS TYPE I4ueuenrnrnnmunracraaronaaransoans

*o o
*, ¥
YES

Hxe 00 e ®

c2” T4,
R -

. *. YE
*.ICNCRE BIT ONe#*voovsevccccsccvevsvssccaccnne
* ok

*, o
*e Wk
NO

xe e 000 ¥

AR RO 20K R AR KA
*

* REFORMAT *
* AND SET FIELD *
* PNTRS *

AR SRR AR

>e v aan

THasvERE bR RRRy
» TEP *
* lN;ERNﬁL *
: STATEMENT NO. :
FERER SRR A

COTI

FREARF2HR R AR
* *

" 15
*. HEX OP CODE
'.' ZEROD ’.*

MAIN12 ET.
:ttttuﬂ LI i iL]
bt b — e n—%
*
* OPER IELD *
* *

*
"%, YES

veesesinsacsransnnas

B *o
o* *e
*oASSEMBLER DP %
, o
*, o
LIRS
NU

xe o o0 @

YES *
Ceee s XRCOMPUTE GO = ¥NX

EREERAT RARAR AR
* *
13
¥

* *
Aok R R KRR

OPSCAN *

—
* SCAN *
: OPERAND FIELD :
Wk Rk

ERERRCG SR AR RRE RN
* ATTACH WORK *
* HUCKETS* :

* Col
SELF-DEF VALUES
* *

X
A KR R KRR
* PPSCAN *
D N T]

» SCAN *
* DPERAND FIELD x
* *

.
eoXo

sXeooosannsne

X
ke
D4 *,
- *.
NO _.* *,
ess®e ANY ERRGRS ¥
*. ¥
o o
o*
* YES
.
:
%
HERKKELHETRKARRRE

:—n-n—i—t-t-c-t-t
*RELEASE RECORD *
* *

breestssecasssonnnan

AR KE SR AAA AR
*
B T e T3
SYMBOLS *

*TO SYM30L LIST :

P

H
*RESRF
* * PUTREC
* * AW e K R
Le.X® CALL EBB * PUT
s * #ERROR RECORD &
: BARERERB R RN AR Rk
: .
. .
leTB H X
- EXFHAG
Dok * & " RELREC *
T M IRl Al S
I sLCCK UP OP CODE* .
* » *RELEASE RECORD *
* - - *
EELEEEL L) wEE¥
X H
AREARH TR RN RRR K X
* : A Rk Rk
*
ceese? CALL EBA ¥ * RETURN :
* * A AR AR KRR

X

BEEES P2 EEERERRAER
* P *
f e]
* PUT B8-BYTE *
:SIAIEHENT WORK *

ERERSPRRRR RN AR

‘ltt‘(zt:ttt’ttt‘
PPN L L S+
E PC[%?éxETU WK E
BEERE SRR RN R

Flowcharts

61

Chart 17.

62

xk
SYL13

EEa 1]
syLl

* R kKRB] kkk Rk
*

* %

GET
* SYMBOL COUNT

* 4
%%

EEBRERRREB KRRk R
-

R L] -

* * o,

* C1 *.X.

* x

-

5 X
kM EEL S EL LS L]
*

*

HASH SYMBOL

-

*

*

*

*

R EAORREE Rk kK
.

-
.

X
RE LRI E RS L D L]
x* *

2 2 2 33

sescae

kEERR[Jueckkhkbkt
* *

* POINT *
TO NEXT 1TEM IN
: CHAIN :

*
*
¥
*
*
*
LR AL L L2 2L L2]
.

b
LS EIAR T L L 222 2]
* *
SET _CHAIN

POINTER_AND
HASH ENTRY

LEEL S SRR 2Lt

LA AR]
* %%

e
* e

.
*. TABLE FULL

EESEE ISR SL L L TS
*

* STEP
* TOTAL SYMBOL
* COUNT

EX X T

*
LRSI R L2222 22 L2 2t]
-

.
-
X
kK
* »
* A3 *
* *
EE L]

IET071

*,
*. NO

e¥asnaccacXh,

srsee

SYL

20 -
€2

«* COM
SYM

.
e¥eseevreccnnencsssnnnscncscccces

habdbd ELLL LT L LT

*
* CLEAR *
*SECTION SYMBOL *
* COUNT *

* *
RS 222 LET2 L 02 1

Xe s 000

LAS LR LR S LS R L 2
WTSLT
AR K= B P B o e
WRITE
TABLE SECTION®
A AL S22 2

N R IRR AR
* PL *

b iat 2= 2 T B S
* *
: CLEAR TABLE :
FARRERRRB RN RRN R

X
e R A2 L L E2 L2 2T]

ayAToRRLE
STékAG%
KRR SRS RERE R

L2 XXX
LZ X2 3

.

PHCLS

kg
Ab
* Kok

* %%
* %%

X
o+,
as” Cx,

ak L]
o%" CURRENY *. YES
*#ISECTION EWPTY .,

. .
*, ¥
*, o ¥

NO

Xe o oo @

:#tttah*#ttt#'#t:
* STEP *
: SECTION COUNT :

* *
LAl 2222222] 2]

e 6000

:#tt#catt#t##*l't
* SECTION *
:COUNT TO TABLE :

* *
SRRk kbR kg

-
eXeeoveonane

e s 0

t*‘ioﬁ##t#ttttl*
: CALL PHASE E8 *
ARXRER R R AR R

L2l

ok

SSYL30 X
B
. x REOYCE *
- * SEG, SYMB. *
. * COUNT *
Tk *
T RERR R AR
: .
- X
. RN
. F3 =%,
. o *.
. ¥
. ‘.' ANY LEFT
. s, o
. . %
- * NO
. .
. .
«SYL1O X
B et
PO TR S
. READ_SYMROL
. * LIST SEG. *
. ey
. X
. ¥,
- H3 *,
M o *,
. . *, YES *
. *, END OF DATA .*.,...X* Bl *
- *, ok * L
. *. o
. e ok
. * YES
. N
. .
«SYL3S X
ST TR R R IR R R AN
. * *
. * STEP *
- * TOTAL _SYMBOL =*
* COUNT :
ERIE I TR S R L T
X
*rk
- .
. A4 %
* x®
T

e 0 ses0s 0t INEsININNIGEILENGOINLILTS

EL b2] LR L1 ok

ta2s *ase V-
L d L]
* * * 3 * * As %
e 2l xR kxR
. . .
PHSIN MAINIS X . MAINSO 1
TerssAL sAErOreLs PPy e) a3" s, A Cu,
* *. IS el

v 'MINAIE S * iAo ErSr * ..*;H;Eg;"o"t.‘ves 2 NON-BROCESS S8t cs

* COUNTERS, SW 3 + SYSEcheNt® » i TRE0E a0l e QUESS,otees

PRI e e ARRARERRBERRN Sk o . “w. oo’ :

. . *"NO . *“NO :
:
X X X : X .
dpk kBl kSR ReRKE PA I VR R R 2 2 2 EE2 TR k2 2L L2 2 223 : NESE AP 4 RKkk Rk kR :
SET » * . * * . * P

* SEGMENT * * » * ALIGN o * GEY .

+ _RESIDENCE * * SWITCH 1/0 % * LOCATION *» o #HEX INTERNAL OP* .

+ TABLE BASE % * FILES * * CGUNTER - * CODE *

ERRARS AN SRR K T T e P : .

. N
ek . -

. * :

1. xe :

aXeeosesoscscasesscscccccce - . - -

“" - . - . -

MAINIO X X . X -

FITRT AR T I 22 £ L S 24 '#*"CS#‘;“****: . :“‘#Ck*‘!.*““* .
*

» * + ATTRIBUTES, * - * -
GET NEXT RECORD * VALUE BYTES, * . * COMPUTE GO-TO * «
H * * _LENGTH * o * E -

* . . * P
REIEERRRRSREE P -
.
.
X
. MAIN20 X : X .
D1 *, kD 2k Rk **'#ln'_’*‘i"##**# . EIT 2 eI R 2 L2 2] °
.. * * x . * PERFORM * .
* ALL __%. NO CLEAR * I * APPROPRIATE * o
*2 STATENENTS 20 ...xb ERRORTCOUNT * t !NCREHENT PER * o * STATEMENT = .
#.PROCESSED. * H * TYPE x o * HANDLING x 0
. : * P4 x * ROUT INE o
q .;Es ““3‘*’*"*‘*‘* *‘**“““‘*"“* - Aok ik o ok o ok .
* - -
. : . : . :
: . . . Xeesseoanves
.
X X - . .
.. ke MATN4O X . -
El *g E2 ‘. Rk R RE IRk kkkk . .
¥ *q ok * £ d - P
o* *. YES a0 TEST NO * TEP * :
*2, ITERATION .. *.PROCESS TYPE Hesnees ¥ LOCATION o .
*, CDE ok - *, . * COUNTER * . .
W o . ., o - « o .
*, ¥ X 5, o¥ - PR332 RS R 222 L L] . -
* NO *akE * YES . - . -
. * *
. * A2 % . . . : :
M M * :
: e . . . Tecessseacane o sescesesass
. X - X - -
MAIN12 X ova - ke - -

REERIELERRRAREAEE 2" . : F3" s, : N

* * *. : o *. — : :

» * ST *. YES . .- -, « * . :

* FINISK £SD & * IGNORE BIT ONiowecoXe o TEST NAME . X% K3 % : :

* * ‘. ot . .. o* ok : .

BERPRERER R ERE RS ¥, oF X *, o ¥ - .

. *"NO Ak *"YES . .

M . * * . : .

M . * K3 * . cesesceescncan .

. . * * . :

: : PN . .

. . . :

PHCLS X X X :
"G[*‘.*t*“ :t“*GZ"‘*“***: :“’*Ga#“**‘*“: -

* -

* CLOSE * * STEP * * FORM * .

*« TEXT EXIT % * THRU FIELDS * * LENGTH * :

*, RISEGE # * * * ATTRIBUTE % :
LI EEE T2 2] PSSR SRR L2222 22 84 ok GOR R Rk ok ok ok ok ok :

. : : .

. . . :

: % X :

i Rk 20k kAR Rk HB. .t. ‘t#**ﬂk'*‘*#t'*“ :

PTTT BRI I LS 22 24 * * ¥ i -

' : 3 prIvaTE cove ¥ o0 B "*YES X*ADJECYIVE Meooe t :

* * Hecresees .

3 fuaseEs 3 3 PRIVEREL : *x.COMRANGE .* : :
A bbb i | PP Ca. on” L

*"NO . :
. . . .
. . . .
% eesececcssssssnsscensses :
o, MAIN4S X -
32° T, :utuauuunu .
* *, -
%0 TEST *. YES * LOCK UP NAME :
*ASSEMBLER 0P t#evee IN, SYMBOL LIST % EXeeerasceessanasancnssssananne
*, ¥ - * *
. o¥ X FARRRRRRRARAREEE
+*NO *rEE .
. * * “‘* P
. AL X ¥
: * T i
. P e
X kxR i
*,
K2 *g PTTI PR & 22 L2 222 £ 23
¥ *, .
** 1ilRATIoN Tievcs X enROREREEORD *
» cessceae
#. HNODE o%° y * IF ANY %
“Xe ok P
**NO .
% ;
EEE "“‘
-
Chart 18. IET08/08A/08B T : sce
EL L] Rk

Flowcharts 63

Chart 19.

64

FARRRA]L SABREAREER

*
L atat DL EE S S S
* *
:INITIALIZE 1/0 :
LRSS R R ST 2T T L

)ON.XO sas e
(=23

IN 1
*: SYMBOL TABLE :
EEEEEL AR T LT T2t

*Ek¥ -

* *
* C1 *.X
* *

e s 0

TE
AXBEREC L FERRRRRER KK
GETY

D1 *.
.t *,

o *. YES LR b T
#. END OF FILE <¥ccoscesoX WRITE
-, . - * QUT SEGMENT =
N FRRERAR RS
* NO .
. X
. SRRRRKE DR Rk
M ket e TR
- OUTPUT CARDS
. * FOR DEBUG
. T T
. N
X .
¥, X
[HORARR S 2 AR Rk
KL *. PUTLB
R L koL,
*, RECURD 10 BE . PUT LITERAL
ROC. % * BASE TABLE
't. *° ey
'y VES -
: :
. o
X PHCLS .
TG Lakkasanray X
BRREC2RRRRE AR ER
COUNT ‘ *
‘ THE STATEMENT : :CALL PHASE E9I :
TEPRER BB R R ERE RN
PP
.
X
o¥e MACHQOP
.Hl t.‘ :ttttuzttttttttta
" TYPE *. MACHINE _* Ty
‘.‘ OPERATION ‘....¢-a...X'UN DDPCH SNITCH*
. .
.. o
* | PN,
*ASSEMBLER «
. P
N b »
- asX® C4 %
- M *
X T
¥,
‘J1 *,
. R
o* PCODE *, YES
* lESS AN X®16'c*eceeeevocsesancscsccssonsnancas
“x. o
2, L%
* NO
X
¥,
K1 *,
Y
. OPCODE *. YES
. LESS THAN
e X'lBv -
o ¥ -
- X
*"NO .
% *e3 s
hee 2833
. nnn
* A2
*
san
IETO09

LASTAB

HARRAAD2R R kG RRRK SR

canw

A3
268%

-
.

X
Rpkk R A JRkkE Rk Rkkhk
* *

* &%
*8n

» TURN *
:ON DOPCH SHITCH:
* *
R
S, :
‘ B3 ‘-X-
e .
X
Ireereantaranany

NOBIT

-.-.‘COHPUYED BRANCH*

R R N I S S Ry PSP R

L R T N N N I R N N N A PN IE N I USSP SR

LI R N A S R)

‘*"“.*“'..**.‘
: Lt 1]
. * *
. * Ca4 ...
- * L
X Ex
ke SOMSYM X COLENG
c3” e, FREARCH ERELEERAD AR AR5 o AR KK
¥ *y GETWKB & * *
LEXTRN LITORG*. VES PP AL o
START DC CéECT-‘--...-.-X‘ FIND BoeaeeeveX FETCH OP CONR %
DS DSECT COwx » STATEMENT
% EQU L% * WORK BUCKET * *
By o F EEE LR TR 2 S 2% L7 ¥ ARk R ko A ok ok R ok
*"NO .
. .
) .
o, TVl PUTSYM X
‘Da '.‘ *i‘*'D’Q""*'.‘#: :‘*t‘[‘sﬁ**‘***‘*:
LTITLE (15T *. YES * PROCESS = * * PUT *
*. TITLE CARD eessesseX® FIRST TITLE * * SYMROL IN REG *
*, CNLY) * CARD * * *
~H. . * » * *
- .;D kR ERR KRRk Rk Aok K KON Rk ko ok
* - -
. . .
X . 1EXTRN X
EARRAE IR RESRRRNE : TERAES KRtk
* * :
* SET * - t t
SWITCH DFDSBC=4 . * HASH SyMmMooL =
* * . * *
* * . * *
R SE P L L . ERS 2R TS 3182 0
. : :
. . .
. . .
ceeeccccnanne . .
. . TEXTRN %
FRRRRE TR ARk . . A A AE G A kA kR
» N1 . . x GETWKB *
it et P e S M Rk ke KKt
e A® ROCESS - - * *
*PUNCH STATEHENT‘ - - :GFT WORK BUCKFT:
S . : Aok R Rk AR A
. . .
. . .
. . .
FRRRAGIIRRRRRANAE o . :
* P * - . -
P T Sk S S . :
oo X¥ PROCESS * - - -
:REPRD STAYEHENT: « - -
ERFRER D SRARARAEK : :
M . . .
: X X .
evscssccsscXeKoaenoosvseoconsssccessscsascssecsaascsoesacccccnnanas
DUNSYM ¥y
H3 -
ok
*, LTORG .
e, o :
R, ¥ .
* YES .
. .
X :
BARRRS JIRRARAR SR AR .
PgT -
PRI 35 Lo :
PUT LITERAL -
* BASE TABLE =» -
SERERRR AR .
. .
: .
. .
X .
REEREK . K& -
* GETHWKB * - TESRAN
PG L TP X Rtk kA ek dek
* T ¥ceneeeeeX OUTPUT CARDS
* LTCRG BUCKET = * FOR DEBUG =
» * PROGRAMS
FEERAPEIRRAARBENA PR A
T aems
TeX® CL *
e

EAA AL Y WSS TSRS L2 L)

R AL koo Rk ok PRN
B B e o e

ENTER PHASE ESIx eeX PRINT
* * HEADINGS *
FRERE AR AR R
N B AR
. T
- * * .
- * B2 %.X.
. * * .
. ke,
X FSTLP X
FHORIBLES b aRE Freerpzercenraey

e Lt EEES DX 2 28 2 d

* *
* - * *#SET ESD POINTER%*
* INITIALIZE * * *
* PHASE E91

teseseesssssastssssssasssaat s

* * *
Tk Rk R * »
: .
. :
: :
. .
X X
RN o*, SETSEG
*Cl *.‘ c2 t.‘ HAE G 3 A okk ok ok
T ANY Tw. YES o%° MORE _ %. YES * SET NO OF *
*. ESD ENTRIES e¥ecese #THAN 16 ESD'Se®aacecees X¥ESD?S = 16 FOR %
*, o . LEFT % * ONE SEG. *
*, ¥ *q ok *
e o¥ ¥, o# PR LSRR ELEE S L2
*“ND *"NO .
- . -
. .x........................:
CALL1D X SETSGR X
EFER S IR ET R EEE S L 1 LRI 2 E PRSI RS R L]
WIST RDESD
ER EE B B e St S 2] EL B BE SR T B B T
WRITE R
#SYMBOL TABLE * * AN ESD SEC. *
EERI L RS2 E T2 L kR akok K kakok
e . M
#20 * .
FEL x. ' .
. .
CALL X X
ti‘#‘El‘*#****### :t*ﬁtEZ*tt**#t#*:
* PuUT * * SEL PGINTER X
* CARD_COUNT IN * * *
: ITABLE * * FSRcMERT *
ES RS RS RIS ES 22 24 LR ES SRS EESLE 222 L]
. .
:xI
PHCLS X CEI3A . El4
EEESEEF] KRR R RhkR R kK - F2 *, *#*“FB##*’*#*#“ i‘#lch*ttt**‘ttt
PUT : o . COMBINE : *
A . o YES I & START SET *
puT D #lTvee = sp R .*........xtvnwe AND MAKE :........x* PTR ECR NEXT
LIT ADJ TABLE . *. PC o* ADJ TABLE ENTRYS ENTR x
FEREERSERERRE : .‘.*.;; o o Ok Ok oROok ok ok ok ok "**#*t**‘*t**#‘t
: . . .
: : : :
. SEIBA X X
X . HHRKRG 2R RKAKKE AR K tt###ﬁktt*#ittttt
KA AG] Rk Aok Kok . * * * 0JUST
* EXIT * P POINT * *STARY VALUE Foru
* TG NEXT PHASE * T % TG NEXT ESD #Xeesecocecesccascsscsscassssasnaces® NEXT CONTROL
P ITEM * ¥ NSELCRRTRON A
LS EL 2L S22 L] - * * BOUNDARY
- ELES RS 2222 R L2 22 2] Ak ko fok bk Rk okok
: :
: :
: X
. o kg
: H2" k.
. o* .
: o END .
Tese®l OF SEGMENT 1+
. .
* .
*"YES
.
.
X
:*##‘JZ“#‘*#“#:
* REDUCE *
* NO _OF ESD'S %
* LEFT BY 16 %
LIS ER SRS 2 R 220 T
.
X
¥,
K2 .
¥ *, #-u:t
ANY *. YES %
ORE ESD l#....X¥ B2 :
.SEGMENTS . *
*, ¥ *tat
*, o
*°No
i
Aok kR
21 *
Chart 20. IET09I Wy
*

Flowcharts 65

21 % * *
* A1x * A4 %
* *
* o
. .
. sescenisanans %
SECPAS X . o ok,
ReraL e arreny . 2 e SRR RAG &Rk KR AOL
. . T
SRR ECOND BASSS T a™ asnormaL ."-YES t";m) oF on;"tm x"-;fgg'%lt-*'”
. . P Hecessone @
* "THROUGH €SO ¥ . *. RETURN o#* " . ‘:,‘ o* « PURLETIREAY &
FRRBARRAEEEBRRRER . “x, % : . ot iy
. . *"NO M *"YES .
. . N . . .
. : . : X :
. . . . L] :
NXESD X . X . 2 X
FreergLarasasaars C reseapdsEseaseser o ** A ARR SRS AR T AR
- *

- 4 s GET . * SET PTRS TD
..X:SET ESD POINTER® - * PTR TE ADJ * . *SEARCH_ESD ADJ :'
< * <ot TABLE L +TAR WITH LT TO¥

eig TR TR AR R T R

* . . : . .

* Bl * :
* * :
on P . . . [
o*, SETTO . X M . LOOPSR 53
c1® e FERRIC2ERERIRRRS D peResCavERRReRssr o BersaCorbranrnrns €5 s,
. . . o *.
MCRE YES SET NO ' . *T"ANSLA"E NAME ‘ - INCRE NO o % *
. THAN 1¢& ESD'S ‘-- X'ESD'S = 16 FUR * . ANE IN * - ‘ESD ADJ PQ T R*X...-.-.-*. 0 ok
LEFT . crenet NE * : tcmve ANC LNAMEY s thre x, FOUNO
“he ¥ FHEES RN AR . bSO S AP PT
* NO *"YES
.
Xesesncsesscanscassaascces . : : :
. . . .
E12B X . X . X
braresnlatararsneer O T Tyt tat st ras B R e w5 sk sk ko
- * MAK [£
L et I = 70 PRGPER % . ¥ ByTE LIt Ay
* AN ESC . % FCEMAT FDE % . + TAB ENTRY FOR ®
SEG * TR GRRINT LINE % . * THIS LITFRAL *
- . *
EEREREB KRR ERE - EXERE SRR RN RRRE K - **#"‘:225*‘**‘*1:
. . - - -
. X . :

"“‘El';“*‘*“' - BERRRNETRRRARRRERRK - -

* * . .

.s TR 251’ EXT : o PR S B St Sl D Sk - :

*SRPTR_FCOR N . .

: ESC SEG * . * WRITE CARD =* . -

ARREREANEAEARRR R . P M .

M

: : . - :
ix......................... . . . :

. . : X . .

NTST ™. : B R T 14 Shdidl .
* . - N . -

«®SEOULD SYM *, NO - . L R T ettt 1 . .

*, TABLE_BE e¥eone - - PRINT - .

‘-éDJUSTED‘q' . - - * HEADINGS * - .
“He ob M . : ARRARS AR ERRRE . .

1 VES 3 : : 3 : :

X . X H *

PHeeIG AR Eenarar . nuu(;%aa';tunnn Tosmetagatiteareters .
PR AL S S PRt Y PRI LS b SR .
READ . . .

* ADJ!{%ELE'" » : * SYMBOL TBL * - * PRINT LINE * - -
HOTY T Tt T A HRRARRARE K : FREE S REERRRR . M
- X - . -

. . . : : : :

. . . . cesvencesas .

. . : : .
aunmninuauuc . AERARH 2R R . *. :
. * * - *, nnu -

LR R R e e ab it ot L] - #PROCESS "ENTRY!'* - *, NO * .

WRITE - *ESC _[TEMS WITH * . ENT .‘..-.X‘ Kl " -

*#SYMBOL TABLE * . : THIS SEG : - . .-‘ .‘*“ -

FEERERERER R : P I T TT T M T .
. . x . *"YES .
Xeecosnassen : . . :
. cesscsesse : : . :
X - X -

MXTST] ot -E|3C - oo -
RIN I uuuzuuunn : JEEN vers N

IS THIS "% NO : SICRE : - “s.ND ok * .

.THE LAST SYM o'-o.--. *OF ESD ITEHS IN‘ . *, ARE WE THFU .t....xt 81 * -
TABLE .* * THIS SEG * - *, . . "“'* -

't. o BERR R AR ARRN : R .

——r * YES - * YES -
. - . .

* K1 *.X0 : . :

FUPPLA . Xeeeserecrcesasaansssasoseasacesecscsccsasancsasanns
138 X LEILLP X

AEDAK 1A RREEARRRN ST RRRERAK I HRRRARRRRRE

. H RT3 L) LN,

* PRCCESS TYPE # . GET

: : . #LITERAL BASE »*»

ey . FEERRRARREAR

. . N
D eeeeeescecessecaccssacasssacsssunansannn ’:(
eex
> Ao s
*
Chart 21. IET09I]
P

66

* *
*x A4 *
* *
Rk
:
X
MLOO oXg
twtttp%:;:;ttt#t: .
* - .
Lot St Bk Rt e e e YES o* IS *.
* * eeees ¥ OPERAND BLANK.*
* INITIALIZE * . *. ¥
* PHASE 10 * . *, o*
P et e L . *, %
. - * NO
. . i
X . ox.
ERT L AREL LIS ST 2 . R4 *,
GETLAT . ¥ *o
P e S L T . « NO
GET . *o COMMA e¥.eencseenccsccerncan
* LITERAL * . - . .
ACJUSTMENT . *. ¥ .
FRARARFEREARK . *, o% -
. - * YES .
. : X :
MLOL X - ¥ .
HRFRARC] R bRk . C4 *, .
GESRCE . . -
MR A e R :
*. 2ND CHAR e¥eeenoncsaccacsacXe
* RECORD * : *.CUBLANK _ o¥ X
. . ¥ .
] . . o* .
. - * YES -
. R .
3 MLO12 i MLO X
¥, ¥, 013 ¥
‘Dl *.‘ . 13 ©s *,
T THIS e, YES o gs “%. NO o SHOULD #. NO
. ;%a{szegs .*.......i *.* REPERQND *.#.... *, DPFRAND BE .*,...
“x. o+ hkh ~JEQUIRED, - : JRLANK .
¥ o¥ *24 * X, ¥ . o ¥ .
* NO » B:* * YES . * YES -
. * : : : :
H X : X :
El‘ .*. Aok ok 4 okokook ko ok ok : ek R 6 ok Kok ok kK :
ok * L * . * LUGERR * .
% *, YES A e e e . et e e i K .
*, MACHINE OP o*ccceoees * * - * * -
* - X * LOG ERROR * . * LOG ERROR * -
*, o kR * . * .
*, ok *23 * P R P R L ST . P S) .
* NC * C2% - . . .
M * % . . -
- * - - eXeoosssssase
. . X .
- sesccccccecXeXeseooseoseoancosnscccanes
X .
¥, - ot
F1l *, . F4 *,
¥ . . ¥ -
¥ FIRSY . . ¥ *. YES
*, PASSG'S‘HITCH e¥eeuoseosceancsscncsscsnccccnsssvensossvesessonse . *.*TXTLE CARD o¥cvavnses
“e. o . . “x. o Ehrh
¥, - - X, X ®24 %
* VES - - * NO * B1x
. . - . * *x
. . . .
. - . .
. - - X
*o . . ¥
Gl . - G4 *o
. *, . ¥ *,
¥ HEX *. YES . . *, YES
¥, TYPE 18 CR e¥ccecesvcsssenessssscsccesccscscesssccsnece o asscvoccne *q LTORG e¥eeseoses
*, sS . . . - X
. . . - . Pl
¥eo o¥ - X, ¥ %*23 *
* N . * NO * Bl*
- . . * *
- . . *
- . .
. escnsenscscsccsccccscnancsXe
X
ok, MLO1G ¥, ¥,
H1 - 3 *, H4 *, LEEEE L ER 2 E 2L 2
X . ¥ - o* *,
¥ 18 *. YES ¥ s *4 NO - *, YES * TURN *
* NAME PRESENT oe¥icceccascncocnssssocscncsvecenneees XX NAME REQUIRED c*.00s *, LITR e¥eeaoeoaa XXON LITR SWITCH *
*, oX *. ok . . . * *
*. ¥ *, ¥ - - ¥ * *
LT %o W% . . ok sk 80 Rk A AR Rk
b4 YES * YES . * NO .
¥, X . M .
J1 *, AR Y AN RN AR EE e I NET X B . N X
o . = LOGERR * . . wakaok
<% SHOULD *, YES ke B e e kK Em K ek K R = R . X 23 *
NAME BE BLANK :%eeooeneoX¥ * ® * R + Bax
‘.‘ ¥ * LGCG ERROR : : LOG ERROR : . J& x, & &
* Ry S T T T Y P2 TR A2 TR . ..'* 1s ".. YES *
. . . X, TEXT A PRINT o*acoenoces
. . *. CARD o¥ X
. . . . ARk
X LIS *24
* NO v*J:t
MLO11 : *
EELETTY X
* Ak
* STEP * *
* PAST ‘2%2‘
: C * %
A HRE
X
ARk
* A4 %
ETT Y
Chart 22. TIETI10

Flowcharts

- *
* A4 %
M »
e
.
.
X
ARRERALRRRERAR
* .
* TURN .
* NAME REF, ON #
* FOR XREF *
L Lt] Ll il Rk *
*23 * *23 * *23 * PR e PRI Z L T L]
«“p1# * B2 PR .
* x ¥ - % .
* » » .
. X . X
MLO31 X ¥, MLO34 X o+,
AEAEEIRL AR RERRRREE p2" s, !tl#tﬁ3.t*#tt###: B4
L el 2 .»° REPRO_ " *. YES STEP * S THIS “#. YES
GET LITERAL *. OR HMNOTE -‘--.---..X‘ STATEMENT * »: HORK BKT FO e¥oevsvoos
* ADJUSTMENT =* *, - CCUNTER * COM X
TABLE *. ok . * . . ey
P T . FRA AR R P *24 %
- NO . * NO * Gl*
- . - . * ¥
eeccsvscccsssesesscsssccccacXe - . *
SRR eXeoooesonscoonssescsnonsna .
23 * .
* CZ‘ MLOG ¥ X
2 *, EERERCH R KRRk Rk E
.. * *
NO * *
P T lS TEXT NAHED.!.... *REMOVE UNWANTEO*
x, B * BITS *
.. .: : * M
*, . N P
* YES . -
. . .
. . .
. . X
X « ABR ¥
CRRRRD2ERRRRRRREE L ERERADIHRRRRRRER D4 .
* * .
* PUT * o * _ PROCESS % YES o% ‘s,
* AND BLANKS IN % - *STATEMENT WORK "X......-.*. STATEHENT ok
b STSYM : . : BUCKET : WORK BKT ¥
L2222 RS2 222 22 L 2 d : EEiI2 2 22 222 22 L2} “.
- - B * NO
- . R
X . o, HR
AAERRE2R AR RN RRAR - E4 %, t*t*‘[_‘;**ttttt*t#
* * : ot -, SETAST
PSS i . YES PRI L3]SI
*» PUT * - " LENGTH SVHBDL *eaeoeeaa XX G0 *
:NAFE INTO STSYM* . WBKT "‘ GET SYM TLBLE "
SRR AR M “a. ox AR50, 5 S
. *"ND .
: : . :
. : : .
. Xeoasooesonces . .
. X -
AGR .. HO1 X
ARKRHF2RAN SRR AR o F4" "k, FERRAESEXRERRRR AR
* * * * -, x STGET

‘-‘—‘ﬁ‘—*—#—l-t—‘
* LOOKUP *
:NAME IN SYMTAB :

LRI PRI RSS2 E L]
X
MLO4S o,
EREERG] AR R R G2~ s,
*+ OPCHEK * . .
PN 51 S YES L% 1s ..
K FOR T B XeseeerEoalt NANE IN e
* NULTIPLE * *. SYMTAB .
+ DEFINITICN _ # . .
PR3 113 531 P
. +°NO
ceesesscsasresescscssssseXeKaannannane
*hERE .
*23 x .
*“H2% MLOS X
.5 L T Trr T
*
. . PUT * *
cseaseeX® AND BLANKS IN *Xe.o
* STSYM LA
EEE 2222 ELE R L2 2 2 2) -
. -
: »
: * H2
. *
. T
X
PRI NPT E L2 2 E L 10
K
PSR L3 hui Y
GET
SNEXT WORK BKT#
P TP
o*.
K2
-,
*. YES
* axr PQIN?ER B
.. . .
o on X
*«*NO P
. 24
. *“Fax
- ot
Chart 23, IET10 * .
* A4
* .
PrYm

68

S
et ot St B e e

ES t—#-t—*—#-t—#—*—*
* ‘X........*. NAHE SYMBOL o * GET VALULC
*GO SET SYMBOLS * * FROM SYMAOL *
* * - * TABLE *
e LTI ESTET PEP RS T *, % AR AR AR KA
. * NO .
- - o
. - N
- - o
. . .
X -
¥, AHCL1 X
HERRAGIRRR KR ERREE G4 *, Aok G 5 Aok kK Rk
* sy * ¥ *,
Lo 2 S B o 2 I B ok *, * DEVELOP TRUE
* [* *., LITERAL WBK e%*uecenee *LFNGTH AND MﬂVE*
:SYHBUL IN STSYH: *.‘ . - ‘ TC WORK BKT *
R R S ¥, ok . Ao AR RO Nk
. * YES . -
- - . .
- . essescsnsnsXe
. . -
. - .
. . .
AGOL X X AFR X
I EEEY TSI Y ELE T L TP PP TR R RH S Rk kK ko
* * * * * *
E SR B S Dy o Tt L] * PROCESS * * MOVE *
* LOOK UP * * DC/DS WORK * * EgD-!D ™0 *
* SYMBOL IN * * UCKETS * * UCKET *
* SYMTASB - - * * *
LEITTEEE LT TS EITT R RS LT R T Y EETT IR IS RS TY
* - - -
* . sXeeoeoscccnan .
* - X - ‘e
. Rk . -
X * * . .
¥ * H2 * . X
J3 - - * - LR NEE Lo I T2
o x, *EEE - * *
IS *. YES - * MOVE *
* E!"ERN Sk ON e¥eeocsscsecncccan » * VALUE TD WORK *
‘e . » * BKT *
. oF . Ak R R KoK
* NO N .
X AGO91 X » .
#!tt'Ka##t.tt#*t: AR AK G Rk KA reecsscresensas
* * *
* * . —O—t—t-'-*-t—m
SET WORK BUCKET csa¥ CHECK
: : « *FOR DUPLICATES *
EETT PP IE TR ATE T PO LT R I T
- Eai
- *
o *x H2 &
X * *
P2l] T T EY
* *
* H2 *
* *
e

#24 % %24 %
* Bl * B4k
» * %
* *
. :
X .
ACR .*. ML 10 X
LBl PresrpzemkRan FRERKBL R R KA AR
* c *
1 g NO TURN Lot At S e B
‘ Y!TLE H[TCH -*--o..-..X*ON TITLE SH]TCH*...o-......-..o-o..--..o-o--...- * CLOSE *
.* ON - - : TEXT STREAM :
‘. L% Tt T RERERERERRR AR
* YES . -
: : :
. . .
X - .
¥, - X
‘Cl *. - :nncqnuut
“x. VES I % _TURN OF *
*. NAHE FIELO .‘.--.oa---.-..ooo.-.-.....oo-...-..--o-.-..-......-...-..l. * FIRST PASS *
BLANK % . : SWITCH *
“¥e ok PR PP -
* - -
. : :
. . .
. . X
X - o ¥, PHCLS
"tttmtatttt#t#* . D4 %, AN SRR Rk
LOGERR : PUTXRF
- t-‘-t-t-t-*-‘-t . 13 15 “%. YES LI S U
* *oeeerasecerncesscccassccccccscnssssnsecscscscscscnncscscscXe w2 LAST SVHBOL e¥econsnasX
: (LLEG‘L NAME : . - *o ABL ¥ * PUT X—-REF =%
P T TSI : ‘. o AR SRR RREE
- * NO .
. s :
. X X
. Ak OR E 4 Rk ok ko kok H AR RE Sk ok ok KRRk
PN 48 S, T S P
- GET WRITE
- * NEXT SYMBOL * * X-REF BLOCK *
: P Ty R
T ks M M
- *24 * .
. *F4 wox0 -
. * * - .
R L X :
«ML20 P -
. F4 *. X
. ¥ *, AR Gk kR R oKk
X 0 *, * EFTCH *
- --‘ IS LIT SW UN*.‘ : NEXT PHASE *
I] M “x. o Rk K Ak
%24 * - *, %
“Gl . * YES
% : .
* . .
. . .
X : X
AMR ot AMO1 . ¥,
61" k., FERRGARARRRRREH . G4 %,
ok *, * * LT I o *,
o ¥ IS *. YES * STORE * * * X NO %
*, COMA CNT = o¥eeeseseeX® NEXT * SYMBOL * * g4 *X..oo‘ [S TEXT NAHED *
*, 2ERC ¥ * VALUE * * *
*. o * * ARk ‘%, .t
®, ok Aok R Rk LI
* NU - * YES
. : .
. . .
. . .
X : X
FARARH] ERA R R . FrrsHosER s RERs
* * .
* * . * MOVE BLANKS *
REDUCE CCMA CNY# - *TO ALL BUT 1IST *
: BY ONE : - : POS OF NAME :
SRR RS R R . EEEEER RO R R AR
M . ok .
- - *24 X .
- - x J4 %, Xe
- - * -
. . P N
- . ML24 X
. . HRREA 4 RR Rk
- - * TURN OFF =*
- . * LIT SW
. : * EXTERN FLAG, *
: s * FIRST oPND §¥t
N : AR
: . .
eXeeneeosevosccnscnnssovece -
X -
LiEdt] -
23 % .
* H2#* X
* ¥ AR LRI CA RS R 2T 2T L]
* * *

* ZERO *
: LOC ADJ VALUE :

* *
ik kkkkokk Rk RRkk

Chart 24. IET10

Flowcharts 69

Chart 25.

70

BESEFAL B RN B RRENE
* *

EEt et 28 B D B2 22 2
* *

(TELIT ORI LI E L 22 3
* BL. *
PR P PR I =X Bt B

.
:
HERS KB] SRR R kR Rk o
ETP :
EE 22 B B a1 BeE 1 -
LOCATE :
+INPUT RECORD * :
LTI IR LR L 1] .
. :
X .
o PHCLS :
cl ‘. :“'*CZ".“.*"‘ -
o :
¥ B B e e e e e o -
+2 ENO OF FlLE HecvessadX® CUTPUT .
* EUFFER .
R o ANAGEMENT % .
X, ¥ “*“.“.." L2311 -
+"NC . .
X : :
o . :
o1° s, X :
-k - EFRAD2RRRB RPN -
RECORL TYPE*. VES * G 0
#210Cy 101y 1102%scas # TC NEXT PHASE % .
<or il . : * .
. - . FESER R RN R RE R .
T X s
* NO L2 22 -
- * *® -
: * A3 * :
: x 7w :
- *RRk -
X :
... :
1 el :
¥ kK -
o YES * _* :
+0 RECORD IYPE THelluXE G2 % :
0Co * 0% :
- .l *EEX -
*, oN -
+“NO :
: .
¥, -
F1l *, KRR A REF 2 Rk R E R RR RS R o
o * ETXTM :
. - '-.-*—‘—‘—¥~“ -
*2 RECORD rvpe HereaeeeeX co ceer
011 #ERRCRORECORD *
*o ¥ ERS AR S RBEREE
*"YES
X
. MLZC
Gl *, KRR ARG 2R R R AR S
¥ -
. RECCRD *. NO L L o e et ot D L
2 LENGTH GRTR +¥ecesesseX DUMP
*o THAN T4 % T s INTD TEXT #
. . .
o oF . BERREEARRREER
* YES Ei] -
. o :
: * 62 :
: * * :
- *hkk -
X :
S FBH] S0 RRARRERN -
CLEAR :
LOE S D B s B 2 Bt -
* CLEAR 80 BYTE * :
AREA :
AERESERSF RN R RNE R -
: :
. Ceesessscsnaees
i X
LI RPREEEEEZLEL LS -
» £ * :
* REC LENGTH, _* :
jFLAGy ANC Fl§s1t :
M :
EREERESE L EL 22 22] .
X :
:

¥oreesecccesncssscsnnsesccsevens

* BUILD
: SOURCE IMAGE :
HAEBRBNFRER RN

IET10B

ML2G .
A3 .,

¥ *,
«* IS RECORD *.
*, TYPE 110 O
*. 111

YES

¥eevnseseX

- -

*, %
*°"NO
.
. -
X .
.. THL2
83" %, .
¥ g
o 1s *. YES
*. RECORD TYPE .%ccueea
*. 10 o
ST
*«"NO
:
x
-,
JCER D
" 1S THIS "%, YES
*2DUMMY CRG OR a%.css
%, LTORG . .
*, . .
*, L% X
* NO REE
- *
. * Bl *
- *
. Rk
%
(L PR DEE T L L LS LY
* *

t-t-lgl-t—t-t—#-t
*

* PICK UP_NEXT *
* *

- ML2T

BREERALGEERRAKERKE
* *

He e e M Wl
* BUILD *
1 SOURCE IMAGE :

‘ﬁttttttttt#‘#ltt
-
.
.
-
escssceKe

ok,
8
o*

>

*.
T

", o
., %
OFF

e 0000 ¥
.

RREERCH AR AR AR RN K

-
* SET *
* BYTE_COUNT TO *
* 1ERO *

*
Al ok AR K R R

ETRR Y

HREARRD R AR AR
* *
D e e T g

* P]%K *
*UP FIRST WKBKT :

x
o EST "%, ON *
%, CATASTROPHE +%....X* K5 %
* BIT o+ * *

Aokkok
*

XK

Py
SRR AR PRI AP DL T * *
- - * F3 *
. . * *
- . i
- - X
- X .
ML3F X e .
AR KRS RRBERRRRRE [23 #. Rk [5ok o Rk
* * -t .
* LOAC ADCRESS = *, NO * LOAD ADDRESS *
* OF DCF 0C IN * . ASSEHBLER OP .*........X# nF ﬁEH PQ IN %
* REG GRC * G GRC *
* * ‘. o *
FLET TP L P L. NP
- * YES
T T . . Ak
* - - * *
* F3 k.X. . * F3 ¥X..
* * . . * .
LT T R X CET Y 2R
ECCHA X ML3A o N
FEREEREIRXRREHRRRRE F4 *, Aok kb G R KRR R
3 ok -, * *
L T e A o amh it b ok *. * *
DYMP_EDITED *.COMPUTE GO TO.* e X% (44" *
* RECORD_INTO * *, o* . * *
TEXT STREAM *, ¥ . * *
SEARRRRRNEARR *, ¥ . PRI PT TR R A
- * .
. - .
X . -
RN ARG IRERAR AR RNR . - RAK KRGS R AR KRR
* PUTBKT * . - » *
B s R] . . * *
* ATTACH_BUCKET * evesssssscsssenasaX¥ USING ¥oene
* TO_TEXT * . * * -
* STATEMENT * . * * .
EETT R E r T At . PR R P TR 22 T 2
- . -
X . .
HEXREHT R AR RR A . T .
fALR TO . * * .
*GRC WHICH WILL * - * * X
HAVE EITHER * cecaX¥® DROP *ieea
DCPROCy CCWy OR - * * .
MCHOPS * . * * .
PETT Rt A2 T . B T s L
-.-.....-.XiX-.--......... . .
MLY o¥e . - .
*. . . AR) 5 ok oKk K .
- L . . * * -
* 1s *. YES . - * » -
*. ERRCR COUNT o*eceee o cesaX¥ €ND * .
*, 1ERO ¥ o o * * .
, o . . * * -
*, oF . . AR AR K .
* NO . . - -
- . o Rk d . .
. P * sXessssnssone
. - * K5 *.X,
. . * * .
. . R,
X .
ARLRERK IR RARRRERRER R RS AR R
PUTERR . *PEQFPN RPUT[NES*
L e e s S
DUMP ERROR e essescccescassascscanssescccses¥MLS, NL7. ML 8y *
* RECORD_INTO * - * MLB .
TEXT STREAM . 3’
R R RRRRR . e e T L T
. .
. .
eXeseesannoas
X
LT
. -
* Bl *

i L]

Chart 26.

R RAL SRR AR
* *
: BEGIN E 21A :

AL R R 222)

e s s e

t*lt#sl#*tt#t*t##
#

PHSIN *
*lNITlAL 17 EZlA"

103‘##‘#‘*“#*.1‘
.

vessceccasenes

X
BREEERE LR A AR RA
PUTERR
LR B o bt S
MOVE

*H ok
* *

* H]l *
* *
EEE L
-

.

ECNCP
lt“tnlttwtt##*tt

*

PRCCESS CNOP

R NN

*
*
*
Aok ROk b dokokok ok ok K

.
X
HABEERJ] RRAAKEARER KK

TERR
L e e et T 1
MCVE RESULT
10 OUTPUT
UFFER
Ak ok Ok ok ok

IET21A

.
.
.
-
-
-
-
-
.
-
.
.
-
-
.
.
-
.
.
.
.
.
.
.
.
.
.
-
-
-
.
.
.
.
-
.
.
.
-
.
-
.
.
-
.
-
.
.
-
.
.
-
.
.
.
.
.
-
-
.
-
-
-
.
.
-

iz 2d

* *
x A3 ¥
* *
Rk
esesessssseansessccccsacasscsssvassesXs
M o, ML3X
. A3 t. tllttAht*tt*tttlt
- .* * CT LFV
. “¥o YES Ak ke bk .
. .. NACHINE aP *.*-.......X‘PROCES(S) MACH!NE*.......i
. R “s. o * P
- * * *, X t‘tttttt#tt#*#itt *27 %
- * B2 * * NO * Alx
. * * N * &
. e .
. . .
. eXeoossososeve .
- - - X
oML1 X . ¥
- ol ok k2 300k ol e ok Ak - B3 *,
. * . o* *,
. RESET NQ OF * .
- *ERRORS & ERROR * . *, CNOP e¥eveconcs
. SWITCHES * . . P X
- * * . . o* hkkk
. E R P E R S AT s 2 . *, L* *27 *
. . - YES * B3*
. . . . *
. . . . *
- . X
- . ahEK
X M * HL *
AERREACHRRBRREAREX
GETPTR - EE 1]
Ak = e i m e A .
DCATE CURRENT teseesesnscevssencnoncscssnessrsecssesassscsssssnrtn
*INPUT RECORD *
LR e e
.
.
X
ok PHCLS
D2 *. #t’t#D3*t$l*t‘t*#
.* RK B DG AR KKK
o* S *
. END of DATAx: CLCSE PHASE :........X:CALL PHASE EZIB:
s, o * * Ak ROk Aok KRk
] AR AR
* NO
.
X
¥,

E2 *,

¥ *, GETXTM b
. YES AR R e e e M * *
, RECORD TYPE-X NOVE 10 CU'PUT eseeX¥ B2 *
o o BUFFER * *

Aok ok ok € 3ok ook ok Rk ok R

X .
. . A .
ok RARERAARERAEA .
* NQ .
. .
X -
¥ .
F2 . .
.‘ .
, RECU!;[O)ITVPE ---..;.-..-.-.-...o.......--................. .
. ok . .
* YES - .
. . .
X . .
. . .
., ERAEAGIRERRERARER . .
* * - -
* MCVE DATA TO * . .
TABLES -*---..... * ALUE, Xenoe - .
* AVAILABILIT * . .
.# * TABLES - . .
o BAERRRKEERRRBRRRE . .
* NO . . .
. - N .
. . . .
X . . .
ok, . . .
JUERRE #tt*#ﬂ3*#'ttwt!t: . . .
o* 20 *, YES MOVE * . . .
. BYTE RECORD .‘........X £SD-10 NO TO * . - -
. . CESDID P . .
, o H o, . .
¥y ¥ Xtk bk kR RoRkokokk - " .
* NO M N . .
. - . .
. . .
. X .
ML27 X . .
AR 20k R J4 . .
* o* *. .
* POINT TO * ¥ . .
* CURRENT INPUT * *, BUG FLAG ON <*....
* RECCRD : *.‘ '.3
220 K ook kR oRK KR ¥, ¥
. * NO
. .
cosvessccassas o
X
*kkk
* *
x A3 *
*
xEx

Flowcharts

71

26
%
.
.
;
a1" e, ATESRA2TSRRRAS SRR
. *, * ZERQ O *
o* ANY *e YES * RESUL *
#2 ERROR #eceeaeaaX# INCLUDIRG #
«CETECTED .* * EFFECTIVE *
. o * ADDRESSES # Aa0n
ok FT 27 %
* NO . * B3*
- - * *
o . *
. . .
. . .
. . M
- - LITRDC X
. . HEEER AT HE SRS RIR
. . GETXTM
. . PRI 33 Sal s
- - Sg? 1ST PART
- - * EDITED REC*
. : FRARRRRRRR R
. . :
. . .
. : .
. M .
. . .
. . .
. : .
: : .
. . .
. . .
. . .
: . .
. .
eXeaescecssnsssancascsancas .
ML4X X
000N DA SRREERRER by ot Lkt
e R e R Pt o) M
"UVE 20 BYTE * LOCATE *
ESULT TO = * STATEMENT *
OUT Ut * BUCKET
PP 1141 P PETTYT S 111 P
LTI .
» . . .
* ElL *.X. .
* * ox-on.a-oo-a.oo--oo-ooc..no‘oooocoonooo -
EL L 1 - -
¥, MLS . X
El *, EERAENER NS . REIR RN
¥ *, PUTERR . PUTBKT
. *. YES PR A it i P PTGt Yot BT
%, ANY ERROR o¥cqeensneX MCVE ERROR - ATTACH STMNT
'.‘ ‘-' » RE3¥LTTIO * . * BKT 70 O/P =
“h. et SEEREERERRRRE . SEERAABRARRRK
* NO . .
. . . .
X X : .
P Aaann : :
226 * 26 % . X
H +g2# o,
. 4 * % L3, P T
* * ' * fre
.' lS TH[S *, NO MOVE RESY * * *
, A DC .'-.-..o-.x OF RECOR0 TO *eeeeX* €1 *
o2 051 outPuy * . ox
.q ‘ * * KX
, - ok e o kR R Rk Rk Kk
YES
e
* G3 *.X.
sers X
Gz' 't. FREAACHRRERBS RS Y
‘

15 YHIS “x. NO
, AN F' Hﬁ E OR ‘--......X OF OPERANO T0 *...-

M
't. ot T T T
YES

Xe a4 00 @

“t#'H)Q‘#.‘Q#t.#
D NVRT

‘
#PRDCESS OPERAND*
#AND_MOVE RESULT#

Y x
LELESER RS RS LT L L
0
X
..,
RE
“*#
e HENT *. NO *
»27 BRRAGSTED *1aN0.xk 61 s
¥ *® »*
“u. ot e
e o ¥
*"YES

R I I N N N R R R R R S N I A N S N N R A AP N U SN AT SN Y

seevcssnessees

Chart 27. IET21A

72

el Lo d
*28 * *28 *
* A% * A3%
* ® - x
* *
eevscccccceXeXeanoonasoos .
. . X
L7 X . . ko
HRAREA2 KRRk . A3 ¥, A4 %,
HRRBA LR AN . * * . o* *, ok
* - * RESET * . ¥ ERROR *. YES YES
* BEGIN PHASE * - * SWy NERR AND * - *. DETECTED Hecienaad Xy IN THIS PHASF ¥oveonosecsncccanes
* . * ERRSW * . . ¥ -
SRR AR KRR . * * . *, ok “x, o .
. . SRR R RRAKRR R R . * .k *, ok .
. - - - * NO * NO -
.
. . . eccssscvecseces . .
. - o . .
PHSIN X - - X X
AR RERR] R R ERR KRR - . u*#taqt*tt*‘**tt Aok R R G 2ok o kAR KK
* LINK21C * - . SPLIT PUTERR
e et Lt B DS R . . t ERRUR RECCORD, * #t—t-t—a—t-t—t-tt
* * - . INSERT * MCyE RECTRD
: LIMK IN E21C % - - : SLGLEFENT : *TO ERR BUFFER‘
LRI AR AT T T . - A ARk R R KR SRRk Rk
X : X
LA L YR EEE RS o RARRAR 2R Rk kK
* - GETPTR
* USE GETMAIN * . b o K e R R
*TO ACQUIRE ONE = . LCCATE NEXT
:400 BYTE BUFFER* . *INPLT RECORD *
F ok kR kK . Aokdob ook AR K
. . .
. . .
% : i
e R I A T TS . 02 -:. LR DEL LT TP TS
* * . ok # * Rkokk
* FETCR CURRENT * . ¥ “#. YES * * *
* DATEy, CCNVERT * - *, END OF DATA .*........)(*l UNLINK E21C *...4X* Gl *
* TC MM/DD/YY * - * * *
* * . “x. o * Ak
ERITIETZ L PP S . *, ok tt#!#ttttt*‘#*t*#
. . * NO
esscscssssccccs .
% eecesncesccacnsccscccnsonan
ML9 o ¥, ML14 - .
E2 *, kAR AOKKE Bk .
o* *, F8pP . REEX .
ok *, YES LA S S I S S e T] X * * .
%o RECORD TYPE <*ceeeseeeX SET UP RIGHT saeeX¥ A3 % .
*, ox ¥ * HAND SIDE =* * * .
. - Ry .
o 0¥ R SRS E LI L L2 .
* NO .
X -
ok -
F2 *, .
¥ *. -
¥ *, NO -
*, RECORD TYPE a*cvseecoese .
*, 1C1 ok X -
Ak *, o¥ AR AR .
* * *, ok *29 * .
* Gl * * YES * Alx :
* * . * .
Rk - * .
- X -
X ok, ML13X ML14 .
HRRRRAG] ¥ AR kKA (;2 t. ook K G 3Rk R ARk *tt*tl(}l,t*#?tt#tt*t .
DymMpP * 8p -
L e o et = 1] ok Fopnnrgn *, YES * MOVE * et i R T Y .
PUNCH TEXT *, LEFT HALF o¥sceeeeeeX® CATA TO ¥s000000eX PRINT LINE veee
* CARC * *. SIDE .* * WORKAREA * *MOVE DATA TO %
, o * * PUNCH AR
LR R L *, o X ok ARk kK Hkok Rk ok
. * NO
o X
X o %, MLIX
EEE R LT RS ET T ST H2 *, R e R e P T e
WRRLD .* *, DUMP ok
L oS S S B 2R R T YES A K R o A * *
EGD ON RLD'S . " SPEClAL LTDRG. cecsanesX PUNCH TEXT eeweX¥ A2 *
* . * CARD * * *
“x, ¥ EZ T2
ok kKR Rk ¥, o kAR
- * NO
. X
X ¥,y MLOM
LR PRI RS L TR L J2 . LI ENET TS TS
HR F .t *, * * EE Tty
L T o o e ** - *. YES * MOVE DATA TG * *
|:0|J UN ERRORS *o USING TABLE .*........X* ¥eeeoX¥* A3 %
* AVAILABILITY * * 0 x
“x. o’ * TABLES * ok
T T Ha ok R DL ER e 2T
- ® NO
N X
. SRR
. *30 *
- * A2%
. * % HoRRAEK G kAR kKK
. * * USE * AR G R K K
. * FRFEP‘IAIN T0 = * *
eeesceseencsescrcsensssesstnecstsesussssressacsnanssatersssnsensnnnsaXKE RELEASE ¥eeeonenaX* CALL PHASE PP *
* ACQUIRED 400 * * ®
* BYTES * koK Ak K koK Rk
Kok K R ok K

Chart 28. IET21B/21C/21D

Flowcharts 73

EEER
*29 4
* Al*
» ¥
»
X
... .
Al *, A3 .y EL I VYRS TR 222 2]
. * T » .
*. YES .+" PHASE “#%. NO PR e e ——
™ MNCTE tecieenes * A3 % ...X¥: E9 ALREADY +%#eseseassX _ PUNCH DATA cecevees
. . X % *. PUNCH . X
'N o Pt R *, o* hhRk
¥, F ®30 * X, ¥ LIRS ISR L 2] *28 *
*"ND * D4r *"YES *“hye
- * & - * ¥
: . . *
: X
- ek
: *28 *
- 2 A2%
. . ¥
:
:
X EVLCCW
LRI EINREIREI 2L L L 4 ““’Ca.*‘.*“'.* ‘.#“'Cﬁ““'*"'t.
* * *“" ‘ 8PR
* LOCATE ST * * '—‘—‘—*—'—*—‘—"
SATEMENT BUCKET # % c3 t....xtpaocess FonnATt........x JPRINTY PUNCH “eeeennns
* OPERANC FIELD * Ata eduLt = X
* * “" ' LR it
PRI EET SRR EE 2 22 2 3 ERRABERED SRR R RRE K Kk kkkkERE Rk *x28 *
- * A%
- * *
- *
i N
.. o
c1l *®, ‘*""DZ*“"“‘*‘ D3 E R ADG AR ERR Rk ‘#**“‘?5‘***##“*ii
R *. . . HK
" PUNCH “#. YES LCCATE DATA *. NO e e e ST T
*._ CR REPRO .t........xtaealwo COMMENT t........xt. PUNCH I#ivaeeeenX PRINT CURRENT “oeeeowoX | PRINT beRO
.. . FIELD . . LINE
., o * TRANSLATE * *. %
#e oF PRI ST REE TS L2 2 2 2) *, ¥ Rk kR kR ook ok ek kk
+°NO »"YES .
: sXeoeoseaseasnccassoassnassscsasncasasnsscsnsanens
. e
X » *
. . a3 %
E10 el
¥ *, tL 1] k¥
o *. YES
. cCw THeclux® C3 ¥
. o *
*, ¥ L E 2 L RREE
o .t 429 *
*“NG + Fos
- * %
: TKeeeeneasscasacensasensasansrassosesssesesstscsasenvansnsnonsnns
% IWET3 X o .
AT EIDEESE 220 223 HERERF 2Rk kk bk F3 *, -
* * » F * o *, .
* INITIALIZE _ * PEETR the S .+ OPERANDS ~#. YES :
*UCEVAL ROUTINE # * LOCATE #eevesneaX®. EXHAUSTED s¥eeeences :
. * * NEXT GPERAND # .. o* X :
* M * - ., o whERE .
AR RARE SR RS EES RIS LR 222 22] *, ¥ *30 * -
. » * h1x :
. - L .
: . * :
: X :
- iz 2] M
. . s :
X * K4 % .
SEERAGLASERBAREES * * .
SNFRD aan :
EEE B B et ok D .
LOCATE :
+ 1§71 .0C/DS * :
* OPERANE .
EEE RSP E2S 22 20 -
X «
. EINS ... :
H1 *, RERESH2ERE RS KR EXE *, '.“"Hl“*“'****‘ .
. *, 1 . *. .
¥ *q NO bt B St 2 EX T St g ¥ *, [s] ' PR CESS * -
*. oS Haeanassek® PROCESS %.eceseooX®l NON-PROCESS I#.cuocoeuXt PERAND #eues
. o * INTTIAL . =» X « FLAG ON o% 3 AccORBING TO *
. o * ALIGNMENT # . . . *
K, % AR RERARENRRREEE R - ¥ LTSI B L2 22 g
*'YES * *"YES
. . .
: 29 & .
- * H3w X
- LR LT E] *Ekk
- * -
X * F2 »
ELISENDE LR L2 L L3 * *
* x* LE L]
* ISABLE _ *
* vuwcul NGTOF %
* *
* »
BEFEBESRNEBRDERERE
x
*RRER
%30 *
* (2%
* & ““‘KQ*‘*#‘*"'.
* .." * t“*
PROCESS *
* e t....xt INTER GPERAND t....x* "3 t
. AL TGNMENT
"" ‘ "*“
kR Rk Aok Rk ok
Chart 29. IET21B/21C/21D

74

HRAER kA
*30 * *30 *
* Alx * A2%
% *
* *
X X
¥, X, ML1L
Al ‘e A2 ", ok kb A 3 Rkl Rk Rk
.* ¥ *, *
ok YES ¥ *, YES * MOVE DATA *
*, 21(2 IN CUﬁE Hecenas *, SWITCHES e¥oseecseeX®* TO SHITCHES *eceecees
- e RECORD % * AREA *
e, o - . . * * kAR
*, ok - *o ok R R I T SRt E e T *28 *
* NO . * NO * A3x
. . . * %
- . .
X «ML1O X
HRRRRD] R R RRRRE R . *tt*taztt"#unt
* CVERLAY . *
R e e pat il et ol - * MOVE DATA TO ‘
* XCTL * . * HEADING AREAy *cceeeees
* 21C IN OVER * . * TRANSLATE *
* 21D * - * * gk
ERT R LTS PR . LRI I LRI ER AT 1Y *28 *
- . * A3
. . * %
. .
. .
- - ¥
. - c3 *,
- - .‘
. . * YES
. . *, DPERAND NEED Hecoe
. . SCAN .
- . *, . . e
. . *, Lk X *30 *
. . * NO et * D4
. - - 29 * * ¥
- . . * H3* *
. . X * % .
. 4ssecesscccnsncccsssvsnvrve L i s asd * .
. *29 * X
. - * F2% o*o
. . * % D4 *,
. EEIE LR RS E LY] . * ok *,
. * * . . *
. : ENTER SNFRD : . *, ERl BIT ON o%cscecens
- .
. ERTEE IR LR RS T . "k, .t Pttt
- . - *. *28 *
- . - * VES * A2%
. - - - * *
. - - . *
o . - .
. SNFROD X - X
. FARAE 2 KRR . ARk E 4 Rk ARk
- L2 1] * * . SUSPEND
. * * A A e K e A K . POSS!BLE
- * E2 ¥.,00X¥ FETCH * - ** *¥ERROR*%% FOR¥, 0000000
. * * NEXT WORKBKT * . *THIS STATEMENT * X
. R * . * * L otadd
- Rk kR ook - R L2 2 IR LS 2 0 %28 *
- - - A2*
. . . * *x
- - - *
. i ceesesececscscsaceecesssretatsrtesssstsenessencessscsessaacacrane
- ok, ok, .
. F2 *, F3 *, -
. o *, .t *, #ttt -
. o KT*'S *, NC NO * .
. *, EXHAUSTED '.*........X* DCIDSBOPERAND.*....X* £2 : .
. “x. o *, . Rk .
. ¥, ok ¥, % -
- * YES * YES -
. . . .
. . . .
. X . -
. Rk . -
. * * X -
- * Al * ¥, ok, .
. * * 63 *, G4 *. -
. EE L) ok * ok .
. - » *, YES .
- *, 21D NEEDED .*........X*. ZlD IN CORE o¥eeeveavensssncoeXe
. *o ¥ “x. .* -
- *o ¥ X, X .
- * NO * NO -
. . . -
- . X .
. . t**ttnlnttt*t*#u -
- - * OVERLAVB -
. . e -t—t—t-t--a .
@eecesersse0s000000s0cactosst0rccssstccsatstttenses & Sescecsasoveo * XCTL * .
- - : 21D IN OVER : .
. . .
- . Rt a2 Tt il 22 .
- eseccssncacXe .
eescecssesscessscencancsnsossessancosnn . .
«L8J o ¥ - .
- 2 *, . .
. ¥ - -
. YES - -
...X*. 21C IN CORE .*.........................’................x. .
#. .* . -
*, ¥ . -
* NC - .
. esesccccssecscscecccnacesXe
. X .
X . BMG -
tmuxz*uuuut . X
: C'VERL v . LR L P s T
________ . *
* C ¥oveasossnoesssessessencsencssvesvecvensssancns * RETURN
* 21C IN OVER X *
* * EL A LIS LR 222 S 2
EET TR R T TN
Chart 30. IET21B/21C/21D

Flowcharts

*
*

75

hEE Ak
* * * *
* A2 % * A4 *
* * * *
AR kKR
X X
EPPGO -k ok
A2 . A4k,
AEARALRRRRRAERE . *. (2] ¥ o ¥ *,
* ¥ WERE *. YES * * * *X* 149 ADCES ITRSWH*. X'1C!
* BECIN * *. ANY RECORDS o*....X* HL * * G3 *Xeeeo®*y = X'10! OR o¥ceeeecscccccscanase
* * *. READ ¥ * * * * * X'14* ¥ -
LTY R R S e 2 e *, ok Rk ok *a e .
. ¥ o* *, o* .
. * NO * NO .
. Py . . .
. * * . - -
- * B2 *.X. . -
. * - . o
. hbbd - X X
X XRFLOD X ok, %,
PP TP T PR TP A FEE L e PR e T T e RS LIS
PPIN * * * o *.
Hm e B B KK * SET XREF RCD * YES o% CUMPLETE %,
INITIALIZE * LENGTH X*]10°' * - eve®¥e XPEC LIST ¢
APTRS, LIMITS & % * ITRSHH * - . *,SCRTED TN.*
*1/C ELECK CNTS » * * - . *,CORE .*
FRAREEFERPRRRARAR A8 R AOR Ak A KK . X F
- - - * e Ak * NO
. - - * * .
- - - * J3 % .
- - . * * .
. esesceancenaa . . Rk .
X X M i X %
LT e P e HRERARC 2R EB IR EA . c3 LI s T Aok A (G Ao dookgoR Rk AoK
* - ¥ - * ROLIRLD * WR1XRF
* SET RLO * L e e e el . - SORT *, YES 2 e A e e B K A e e K A e e G
* RECORD LENGTH * READ INPUT - *, COMPLETE IN o*cecaes * MERGE SORTED * WRITE SORTEDR
* X'0B8' ITRSWH * *RECCRECS XREF * . « CCRE . . * PECORDS WITH * AXREF _RCDS ON %
* * - *, - - * TAPE RECORDS =* TAPE
AR RRR IR ARERAERRENR R - *, ok . PRI T T T e e P P T
. . - * NO - . .
LR - - - - L. . .
* - -
* D) *.Xa . - . . - .
* * . - - . - .
- X - . - X .
AC X ¥ - X «EPRL2 ke X
HRERRAD | kR RRk D2 =* o RERERRDIRRRRRAEREEE . D4 *. oA KR G Rk R ok gk o
TOR ¥ - - - ok *. * *
L e e Tt) ok *. YES o kE—deo R ke . +% ALL INPUT *. NO * *
GET INPUT *, EOD a¥eeae o WRITE SORTED . *, RLD RECORDS .%¥.4se *¥X1140 = [TRSWH *
* RECORC RLC =* *. . o RECORDS CON TAPE - *.‘ READ *.* - : :‘
HRRR R ERE *, ¥ .. PRI RSP AT - *, ok X ok AR AR R
. * NO * YES kA .
. . o . - - . * * .
- - P . escscscccaeXe * D1 * .
. - * * X
- - o e - - KAk xRk
X . - e . . * *
ok REACX X « o X X * C2 *
El *, HHF R E 2K kK P A SAKRE J AR AR AR P et L * *
¥ . * * - = * * SETOT1 R
o¥ *. YES * MCVE XREF * P * * ek R
*. EOD e¥eaaa * INPUT_RCS TO = P *X90C* = [TRSWH * PUNCH AND LIST
‘. " - : SCRT AREA : . . : : * RLD RECORDS *
. . . P
*, % X P PP AT T P ARk L L Y
* NO *hex . P . -
- A * - - . - .
- * A2 ¥ - P - .
. * * . P X X
. HREX - - EaE Rk
. X - . * * * *
REALR X o¥a . . * D1 * * B2 *
HEFHAF | d ARk F2 *. . . * * * *
* * . *, . EEE AR
* MOVE * NO .* 1s *, -
*RECCRD _TO SORT * eee¥*, SORT AREA .* ¢ seesssccssasssnssasnesene
* AREA * . *, FULL ¥ - .
* * o *, % . Pl L -
ARRERRRARER AR L] - * * .
- Rl * YES . * G3 * .
. * * . . * * .
. * C2 * . . Li b L -
- * * . - - -
. EkE . - . .
X . . - .
o¥a - - X N
Gl . . . EREXHGIHRRARERRRK .
¥ *. EE¥ - . RD1XRF * -
1s *. NO * * - . *—k—k-MERGE—#—%—% .
%, SORT AREA .*....X* Dl * - - SORTED XREF * .
-« FULL ¥ * . - * RECORDS WiTH * .
. - LS L) - - * TAFE RECORDS * -
*, % . - AR EERRRERNRREAE -
* YES - - - .
e
* eXeseooaon vesseccsccee - . -
: HL *.X. . . .
hEH x X .
X . ¥, ¥, .
HERERH] A X RN R ARk . H2 *, H3 . .
* 0 * - o¥ *, * *, .
ik Sk Sk Bt Lot S Dk e« YES % WERE *. - ALL *. NO .
* * eecesas¥*s ANY XREFS % #*. XREF RCDS o*..ae
:SDRT INPUT TEXTH l'.' READ . *., READ ‘.l
* . - - -
HERRERR R RN REA A *, ok « ot
- * NO * YES
. N (2T .
- - *
. * 13 *.Xa
. eXessovessnos -
" o . REE o
CHK SWH X X . X
P RN R L T L R NP LR Y S S, R J TR ARk R
* * - SETOT2
* * * * . L o oy e e ot T
¥PICK UP ITRSWH =# PUNCH END CARD - PRINT XREF
: : * * - 'FchygESE OR *
ERRERE RS RRE R AREEA TR R T T Y . [EPE TP RS
M . seecesscsessnan
X .
hRE .
* * .
* A4 ¥ .
* * X
PLEEs EERRK2KE R R AR SR
*
* TC PHASE EDI *
* *
L T PP
Chart 31. TIETPP

76

* *
* A3 %
* *
L2t L
R X
ERLLYSRELSE 2 213 ‘*"*Aatﬁﬁttt“#:
* BEGIN H : go b
: * PRINT ERROR #
FRRARR A AR AR : MESSAGE *
. Ak R ROk Kok ook Kk
EDGC X MLOS X
ERRI AR RS L 22T 3 Xk kR 3 kol okok ok koK
AP L i
* ERRQR BLOCK * * "AND SAVE IF #*
EIRCHAIE: el §
Aok ok gk okok ok **“**‘g‘**l*“*.
i -
. .
X X
*, %,
cl *, c3 *, utucqtunuut
o ANY 4, o ., *
*RELOCATABL Ex. HAVE ALL MESS. NO STEP TO NEXT *
o V-CONS IN . +PRLE BRk REDS1eN0 X cRRER NOWBER IN®
.ASSEMBLY . BEEN PRINTED* % ERROR RECORD #
P Tk, L% T
* *"YES .
[X 1 % :
EEE R LI EZ LSS L2 2 L] EREEELOREELELE LS £ 20 -
GETERR GETERR .
H Atk H ke K e W B e K .
co GO GET :
* GET ERROR * % NEXT ERROR # .
RECORD RECCRD :
EXE 2 E TR LS 2) EELE RS 2222 2] -
: . .
X X M
o*, ML11 R :
El *. Mt#wez**atmutt# E3 *, .
-k *, * *.# ERROR *.‘ ko -
o* RROR %, YES PRINT 'NO * . :
»* REEERR Z*........xt STATEMENTS * N ECORD THec.oX® F1 ¥ .
. PRINTED . FLAGGED® * *x. POINTER .* :
*, ¥ * . N 2 20] -
¥, ok e o o o ook o oK e o ¥ -
**NO . *«"YES .
ELE 1] M . . -
* F1 #.Xo : : :
PTT T M . . :
MLC1A X . o MLLY X -
LI T RISETIEE S22 2T X - AR ARF IR RR R ERRRRE -
CETY * R F 2% ERR R ek . -
* STATEMENT % x . * DUTPUT_NUMBER * :
* MUMBER ERROR _* » 10 RTB * . OF STATEMENTS :
*MESSAGE APPLIES# * L * FLAGGED * N
* 10 * LI A2 2 221 . -
e R R SRS R 2L L 2] . LRI P2 2222 2] -
: . . B
. : : :
X : . :
¥, . X .
Gl *, #*#ttGZl#i*t**‘*‘ - Rk kkkk -
.% DOES “*, x . AD * :
NEw STATEMENT. NO STEP COUNT. % ° HEST * :
% NO = OLD .*........x* OF 'STATEMENTS & & TY CODE * :
TSTATEMENT NO* AGGED * NTERED * :
3, o * REG 15 * .
*, ok *'*#‘*‘**t*“*t*# Ak ok -
*« YES . M
Xeeoesercanacasocssscnanaen :
MLOLB X N
PRSI OR R RS 22 2 83 -
#CCNVERT STATE- * .
+ FENT NO. AND * :
*ERR MESSAGE NO.# .
* FCR PRINTING * :
* WITH MESSAGE * :
PRRRAREBRR R ERERE .
X z
1*#*"][**1#“"*# :
GEY COUNT OF .
tﬁancas IN EnRoRt :
*REC :
“'*“’C‘““**l*‘ :
@Ko oteoeotassacoaccntesncescnsssecansssssassscssscesncccenaccecasaseassacsssenns
p
MLC3 X
BEEKEK] ok ok dokR Rk
LOCK=UP
* ERRCR MESSAGE *
* [N TABLE AND_ #
*MOVE TO GUTPUT #
AREA
EEE SRR R IR RS T2 2%
:
:
X
*EEk
* *
* A3 %
* *
L2 11

Chart 32. IETDI

Flowcharts 77

APPENDIX A. INTERNAL ASSEMBLER INSTRUCTION

CODES
Mnemonic Decimal Value Hexadecimal Value Mnemonic Decimal Value Hexadecimal Value
GBLA 0 0 PUNCH 22 16
GBLB 1 1 REPRO 23 17
GBLC 2 2 TITLE 24 18
CLLA 3 3
LCLB 4 4 ENTRY 25 19
LCLC 5 5 EXTRN 26 1a
SETA 6 6 START 27 1B
SETB 7 7 CSECT 28 1c
SETC 8 8 DSECT 29 1D
AIF 9 9 coM 30 1E
AGO 10 A
mun : . 17
ORG 32 20
END 33 21
R v > LTORG 34 22
MEXIT 15 F
MEND 16 10 USING 35 23
DROP 36 24
ICTL 17 11 LITR 37 25
ISEQ 18 12 DC 38 26
PRINT 19 13 DS 39 27
SPACE 20 14 CCwW 40 ¢ 28
EJECT 21 15 CNOP 41 29

Appendix A. Internal Assembler Instruction Codes 79

APPENDIX B. TRANSLATE TABLE

. All characters in source statements are constant, etc.
translated to an internal hexadecimal The Translate Table also allows the user
coding (see below). Translation is done to compile programs written in other external
to facilitate comparisons and some arithme- card codes. A different translate takle
tic operations and to obtain a degree of could be provided and the code translated
character set independence. to the same internal coding (or language).
The internal language is translated back The collating sequence of the internal l
to EBCDI code before output or in cases language differs from the standard collat- |
where the EBCDI code represents the actual ing sequence in that numeric values are
binary value which is used as a mask, higher than alphabetic or special characters.
Machine Machine
Standard Internal Standard Internal
Graphic Hexadecimal Graphic Hexadecimal
Symbol Code Symbol Code

0 00 Q 1A

1 01 R 1B

2 02 S 1c

3 03 T 1D

4 04 u 1E

5 05 \Y 1F

6 06 W 20

7 07 X 21

8 08 Y 22

9 09 Z 23

A 02 $ 24

B 0B # 25

C ocC @ 26

D 0D + 27

E OE - 28

F OF * 29

G 10 / 2A

H 11 ’ 2B

I 12 = 2C

J 13 & 2D

K 14 . 2E

L 15 (2F

M 16) 30

N 17 ! 31

0] 18 blank 32

P 19

80

APPENDIX C. TYPE INDICATORS AND FLAGA :

DESCRIPTION OF RECORD

PHASE 2

PHASE 3

PHASE 4

PHASE 5

IN

ouTt

IN

out

ouTt

IN

FIRST SOURCE RECORD
OF A STATEMENT

MACRO INSTRUCTION
LOGICAL STATEMENT RECORD

01

01

02

PROTOTYPE STATEMENT CONTINUATION
(LOGICAL STATEMENT RECORD)

03

08

08

REPRO LOGICAL STATEMENT RECORD

PROTOTYPE STATEMENT
(FIRST) LOGICAL STATEMENT RECORD

04

OPEN CODE SIGNAL RECORD
(I.E. END OF MACRO DEFINITIONS)

SOURCE STATEMENT CONTINUATION RECORD

ERROR RECORD [WARNING MESSAGE]

END OF FILE

ERROR RECORD [NOT WARNING MESSAGE]

ALL OTHER LOGICAL STATEMENT REC ORDS

C SECT, D SECT, START EDITED TEXT RECORD

AGO EDITED TEXT RECORD

AIF EDITED TEXT RECORD

SETx & ACTR EDITED TEXT RECORD

MACRO INSTRUCTION EDITED TEXT RECORD

MACRO DEFINITION PROTOTYPE
STATEMENT EDITED TEXT RECORD

MEXIT EDITED TEXT FLAG RECORD

ANOP EDITED TEXT FLAG RECORD

MACRO INSTRUCTION OR PROTOTYPE
OPERAND VALUE RECORD

END OF MACRO INSTRUCTION
OR PROTOTYPE RECORD

STANDARD POINTER RECORD

OPERAND LIST RECORD

MEND EDITED TEXT FLAG RECORD

MACRO PROTOTYPE HEADER
POINTER RECORD

MACRO PROTOTYPE POSITIONAL
PARAMETER POINTER REC ORD

GLOBAL/LOCAL POINTER RECORD

ALL OTHER EDITED TEXT RECORDS

Appendix C. Type Indicators and FLAGA

81

FLAGA

FLAGA bits apply to all SOURCE, LOGICAL
STATEMENT, and EDITED TEXT records unless

otherwise noted.

NOTE: For Type Indicators 07 and 0OA, FLAGA
will always be 00.

Bit Mnemonic Description

1 LRB Last record on buffer
indicator:
0 Not last record.
1 Last record.

2-4 RT Record type:

82

000

001

010

01l

100

Print as is. SOURCE
record only. (These
are assembly records
created from program
source input records
in phase 2. SOURCE
records can be con-
structed in phase 10B
also. Construction
in 10B will be from
edited text for lit-
erals (ET-type 110)
or MNOTE (ET—type
111) . This record
will step the state-
ment number counter
on a listing when not
a continuation rec-
ord.)

Error record (created
in any phase).

Print as is but do
not increment or dis-
play a statement
number. SOURCE rec-
ord only. (Created
in phase 10B from
edited text (type
110) for conditional
assembly substituted
statements outside of
macro definitions.)
Print as is if GEN
option is on; steps
statement number
counter. SOURCE rec-
ord only. (Can be
source record of com-
ments for generation
within macro defini-
tion (e.g., "*") in
phase 2 or may be
source record created
in phase 10B from
edited text (type
111) generated by
macro instruction
expansions.)

Process only. EDITED
TEXT and LOGICAL
STATEMENT records

Bit Mnemonic Description

only. (Edited from
source in phase 2.)

101 Do not construct
SOURCE record or print.
(In phase 7, dummy
CSECT, ORG, and LTORG
EDITED TEXT records
for END statement
processing. In phase
10B: Title EDITED TEXT
record, listing con-
trol Switches record
(created in associa-
tion with PRINT, TITLE,
SPACE, and EJECT) and
Register Availability
record, (Created in
association with USING
and DROP in phases 10B
and 21A), and the 20-
byte object record
that replaces the
edited text record
(and is used to form
the left-hand side of
the print line.)

NOTE: When bits 2-4 are
101, bits 6-8 have one of
the following meanings for
the configurations shown:

010 Title record
(created and sub-
stituted for
TITLE ET in
phase 10B) .

011 Listing control
Switches record
(phase 10B).

100 Register Availi-
bility Record
(phase 10B).

111 Object record;
used to form the
left-hand side of
the print line
(phase 10B).

110 Process this record
and construct SOURCE
record for print (ET
but no source, e.g.,
literals (phase 7)
and conditional as-
sembly substituted
statements outside of
macro definitions
(phase 5)).

111 Process this record
and construct SOURCE
record for print if
GEN option is on
(Edited Text and
MNOTE statements gen-
erated by macro ex-
pansions (phase 5)).

Bit

Mnemonic Description
BF Break flag:
0 No break.
1 Break (this logical
record is continued
in next buffer; a
logical record can be
broken only once).
ERI Error record indication:
0 No error record
follows.
1 Error record follows
this record.
"ESI Equal sign indicator,

EDITED TEXT records only
(phase 7):

0 No equal sign in
operand.
1 There is an equal

sign in operand.

NOTE: 1In phases 1 through
5, bit 7 has the following
meaning:
0 SOURCE record is
not continued.
1 SOURCE record is
continued.

Bit Mnemonic

Description

8 SLI

11 EMF

12 BUG

13-16 RI1M

NOTE:
phase 2.

Symbol list iteration,
EDITED TEXT records only
(set and used by phase 8):
0 No.

1 Yes.

Type of operation (bits 9
through 16 used as FLAGA
only for EDITED TEXT and
LOGICAL STATEMENT records):
01 Machine operation.

10 Assembler operation.

Extended mnemonic flag
(used in phase 21B):

0 R1IM is not meaningful.
1 R1M is meaningful.

Blow-up flag (can be set in

phases 7 through 213):

0 Record - is processable.

1 Record is not proces-
sable.

Ml mask; the four-bit im-
mediate field for extended
mnemonic operation codes
(used in phase 21B).

Bits 9 through 16 are mainly set in
When in phase 7,

they are for

substituted mnemonic operation codes.

Appendix C. Type Indicators and FLAGA 83

APPENDIX D. RECORD FORMATS

SOURCE RECORD

NS
“~

type
o | ¥

source

FLAGA

{ &~
[4——————— 72 or 80 bytes ——————

! 2 1
bytes

Type ID - See Appendix C.

R/L Record Length, a two-byte entry to
indicate the length of the record.

Source When created in phase 2 from
SOURCE records from SYSIN or

SYSLIB, source will be 80 bytes
long.
When created in phase 10B from

EDIT TEXT records, source will be
72 bytes long.

If a SOURCE statement has a continu-
ation card, an error, and is split Dbe-
tween buffers (LRB, ERI, and ESI of
FLAGA are all one), then the order on
SYSUT1 is as follows:

source record (first part)

error record

source record (second part)

source continue record (from continu-
ation card)

NOTE:

Source records are not created in phase 2
for the system macro definition source
statements (with the exception of comments
for generation ("*")).

ERROR RECORD

t«———— fixed portion ——
number | state - up to 16
t
e [[eacalar (e [erer femer | Fine
errors [number entries
1 2 1 1 1 1 1
bytes
Type ID 08 - Warning message

0D - All other errors

R/L Record Length, a two-byte entry to
indicate the record length which must
be between 000716 and 002B16

The number of errors
within a particular
error record, from 0116
to 1031¢.

Number of errors

84

This byte is inserted in
the record by phase 21B,

Statement number

Identification number of
error or warning message.

Error number

SOURCE statement column
associated with previous
ERROR NUMBER. If this col-
umn number is not approvriate,
the value is 0016'

Error column

NOTE: May be created in any phase up to
phase 21B., There may be more than one
partially filled record associated with
a statement. There may be an error
record associated with a source record
which has no edited text record (e.g.,
a bad ICTL or ISEQ).

END OF DATA SET

XPe | R/L | FLAGA

bytes

Type ID OA16

R/L Record Length, a two-byte entry to
indicate the record length which must
be 000416 .

FLAGA 00,4

NOTE: Two of these records are inserted by
phase 2 at the end of the text output
stream. The records are dropped from the
output stream by phase 7. In its place,
at the beginning of the buffer, phase 7
attaches 4 bytes, 7F7F7F7F., This is the
END OF DATA SET indicator for phase 8
through DI. After phase 7, the END OF

DATA SET indicator, 7F7F7F7F, can ap-
pear anywhere in the buffer.

BLOCK FORMATS

Macro Generator Blocking
All macro generator utility segments are
followed by an 'EB'. The last block is

followed by an X'EB' and X'FF',
record record record
block | EB | block E8 block | EB [FF

Output Blocking (Assembler Input)

The macro generator output blocks are ap-

proximately 200 character blocks. Within

the assembler flags with each record is an
indicator which specifies the last assem-

bler input block.

OPEN CODE SIGNAL

fype | p/L

FLAG
D AGA

1 2 1
bytes

Type ID 0716 or 1716
R/L Record Length, a two-byte entry to
indicate the record length which must
be 000416'

FLAGA OOl6 .

NOTE: This record is inserted after the
last programmer macro definition by
phase 2, if any are included. It is
dropped from the phase 5 output stream.

LOGICAL STATEMENT

j4—e———— fixed portion ———

type op end of
1D R/L|FLAGA code ASC FLAGY | text statement
1
1 2 2 1 1 2 1
bytes
Type ID (see Appendix C.)

R/L Record Length, a two-byte entry to
indicate the record length.

FLAGA (see Appendix C.)

Op code Hexadecimal Operation Code for
machine instructions (see Appendix
A for Assembler and Pseudo opera-
tion codes).

ASC Assembler Syntax Switches, inserted

in phase 2 but not used by macro gen-
erator phase.

FLAG 7 01 - Macro Name in prototype state-
ment is identical to a mne-
monic operation code.

02 - Macro Name Field is in error
in prototype statement.
04 - Macro prototype statement has
a continuation record.
Text Relevant text from source record;

all source between beginning and end

column, and continue to end column,
if continuation record. All blanks,
except one, after end of comments
field of last or only source record
are dropped. As an exception, for
macro prototype statements, one
LOGICAL STATEMENT record is made for
each source record. The following
REPRO record is the other exception.

End of Statement FF16

NOTE: LOGICAL STATEMENT records are not
created for ICTL, ISEQ, MACRO, COPY, or
COMMENTS statements (i.e., "*" or ".*"),.
The LOGICAL STATEMENT record is created
in phase 2 and is used only to create a
partially edited text record in phase 3.

REPRO
: fixed portion
77
Same as .
logical statement REPRO Le comments 80 | image —(
{
bytes 5 1 Variable 1 |e—80—
Length
Lc Length of comments field, if any.

The 80 byte image of the source
input record following the REPRO
source record.

Image

PARTIALLY EDITED TEXT

The Partially Edited Text records created
in phase 3 are identical in format with the
Fully Edited Text records produced in
phase 4, except that the "a" (little a)
pointer to the appropriate phase 5 diction-
ary 1s not inserted in phase 3 but space

is reserved. The nine bytes of assembler
flags shown in the fixed portion of the
Logical Statement record remain the same

in format and have the same functions as
described.

DICTIONARY COLLECTION

The following records are used in the dic-
tionary collection phase 4 to facilitate
processing the stream of partially Edited
Text records. These records are created in
the Syntax Scan phase 3 in addition to

the partially Edited Text records, but are
discarded with only the Fully Edited Text
records being passed to the Conditional
Assembly phase 5.

Appendix D. Record Formats 85

Standard Pointer (associated with every
ET record)

£ ¢

77
record .
Typ? length flag Tpfrafor end of
indicator . s is statement
indicator (¢
77

Type Indicator 10

Record Length Indicator XXXX, hexadecimal
length of state-
ment.

Flag, Bit 0 Not used
1 0, no operand record follows
1, operand record follows
2 0, no attributes provided
1, attributes provided
3 Not used
4 0, output Edited Text record
to Phase 5 normally
1, suppress output of Edited
Text record after proces-
sing in Phase 4.

5,6,7 (For GBL/LCL declaration only,
otherwise not used.)
000, GBLA
001, GBLB
010, GBLC
011, LCLA
100, LCILB
101, LCLC

Standard Operator List (4 bytes for
each entry in operand list record)

operand edifed text

flag index index

Flag If bit 1 = 0, format (a) is

applicable;
If bit 1 = 1, format (b) is
applicable.
(a) bit O 1, dictionary action
redquired
1 0, not a variable symbol
2 0, if normal symbol
1, if sequence symbol
3,4 00

86

5,6,7 actual length minus one
of bytes at operand
index (0-7)
(b) bit O 1, dictionary action
required
1 1, variable symbol but
not SYSLST
2,3 00, any variable symbol
allowed

01, symbolic parameter
required (SYSNLX and
SYSLST not allowed)
10, must be SETB
4 1, subscript indicator

5,6,7 actual length minus one
of bytes at operand
index (0-7)
Operand XX, relative pointer to

Index (1 byte) the associated symbol
entry in Operand

List record

Edited
Text (2 bytes)

XXXX, relative pointer
to the position of
the associated
symbol text within
the Edited Text
recoxrd

End of 00 (NOTE: If there is

Statement (1 byte) no OPERAND LIST,
there will be no
OPERATOR LIST)

Operand List

{ L
ro7 .
record character representation

::Z?ca tor length of symbol
indicator | (variable length)

rr

If the pointer record contains an operator
list (OL), then the operand list record
will follow the pointer record. The rela-
tive operand index pointer within the
pointer record points to the associated
Character Representation of Symbol found in
the operand list record. This record is
also created in the Syntax Scan phase 3 for
use only in the Dictionary Collection
phase 4.

Type Indicator 11

Record Length
Indicator

XXXX, hexadecimal value
of operand list
record length.

Character Text (extracted from par-
Representation tially edited text record
of Symbol for every symbol or vari-

able symbol in the asso-
ciated edited text record
that will require dic-
tionary action (i.e.,
entry or look-up) in the
Dictionary Collection
phase 4) . These (vari-
able length) entries are
pointed to by the pointer
record.

If the Standard Pointer record for this
Operand List record is preceded by an Edit-
ed Text record for a DC or DS, then the
Character Representation of Symbol of the
Operand List record will be preceded by
five bytes of attributes.

length
fype attributes scale
1 2 2
bytes
Type See Appendix H.
Scale Fixed-point half-word representa-

tion.

GLOBAL/LOCAL POINTER

This pointer record has no Partially Edited
Text record accompanying it. It is used to
point to its associated Operand List record
that follows and contains Global or Local
set symbols, which are to be entered into
the appropriate phase 4 dictionary. The
record format and functions are identical
to the Standard Pointer record, with the
following exceptions:

Type Indicator (1 byte) X'le!
Edited Text Index field in the Operator
List entry contains the set symbol
dimension.

MACRO PROTOTYPE HEADER POINTER

This pointer record has no related Parti-
ally Edited Text record preceding it. This
record is used to point to its associated
Operand List record that follows and con-
tains the macro mnemonic operation code and
the variable parameter, if present, appear-
ing in the name field of the associated
prototype statement. This record serves
mainly to initiate placement of the macro
mnemonic in the Global dictionary and
appraise the program that processing of a
macro definition is beginning.

The record format and functions are iden-'
tical to the Standard Pointer record, with
the following exceptions:

Type Indicator (1 byte) X'13"

Edited Text Index field in the Operator
List entry is not used for the entry
associated with the macro mnemonic and
contains a parameter sequence number of
two if there is an entry for the name
field.

MACRO PROTOTYPE POSITIONAL PARAMETER
POINTER

This pointer record has no related Parti-
ally Edited Text record preceding it. This
record is used to point to its associated
Operand List record that follows and con-
tains, in order, any positional symbolic
parameters that appear in the Operand field
of the associated prototype statement.
These positional symbolic parameters will
be entered in the appropriate Local diction- :
ary in phase 4. This record and its associ-
ated Operand List record will not appear if
there are no positional parameters present.
The record format and functions are iden-
tical to the Standard Pointer record, with
the following exceptions:
Type Indicator (1 byte) X'14"
Edited Text Index field in the Operator
List entry contains a sequence number
that reflects the order of occurrence
of the positional parameters in the
prototype statement operand field.

Appendix D. Record Formats 87

Macro Prototype Statement Example:

NAME OPERATION

Stofement:l &NAME] MACRO

OPERAND FIELD

&8, &C, &KEYWORD =10

TYPE ID

macro header
pointer

1 MACRO

13

&NAME | Operand List Record

prototype
14 positional
pointer

n &B &C Operand List Record

08 source record

macro profotype

06 edited text

10 standard pointer

Prototype Operand value
Record

OB | KEYWORD=| 10
10 standard pointer

11 | &KEYWORD Operand List Record

number of keyword

oc operands

FULLY EDITED TEXT

The Fully Edited Text is identical in for-
mat to the partially Edited Text. It
becomes fully edited text when phase 4
inserts "a" pointers or symbolic parameter
position numbers in the appropriate spaces
reserved by phase 3 in the Partially Edited
Text.

The "a" (little "a") pointers point to
an appropriate entry in a phase 5 diction-
ary. These phase 5 dictionaries consist of
the phase 4 dictionaries which were subset-
ted at the end of phase 4 and which phase
5 completes by inserting the results of
Conditional Assembly evaluation. The Edit-
ed Text records can be divided into two
classes. The first is machine instructions
and all assembler instructions not included
in the second class. The second class is
edited text flag records (MEND, MEXIT)
conditional assembly ET records (SETx
statements, AIF, AGO), and macro instruc-
tion and macro prototype edited text.

88

CLASS I

Machine Instructions and all Assembler In-
structions (except CLASS I1I)

assem= oper~ oper-
type R/L| bler name | ylation | yland |y

comments
flag flags | field field field ©

field Y

X'00' for all CLASS I statements
except CSECT,

for all CSECT DSECT,
START ., [CSECT instruc-
tions are used in

evaluating &SYSECT]

Type flag

Xloll

R/L Same as previously described.

Assembler flags Same as previously
described for LOGICAL
STATEMENT records.

operation, operand, and comments
(variable length)

Name,
fields?

Fach field is terminated by an end of
field flag (Y), X'F8'

All fields except the comments field

may contain text that requires substitu-
tion for variable symbols, and/or evalu-
ation.

If the field requires no substitution or
evaluation, the character string repre-
senting the field is preceded by a PUT
flag and a byte indicating the length of
the string.

PUT Example:

bytes
1 1
PUT 06 symbol | Y
X'FD! X'F8'

If a field contains variable symbols or
text that requires evaluation, appro-
priate sub-records are inserted into the
edited text in order to fully describe
the field and the evaluation and/or the
substitution action reguired. The for-
mat of each of the various types of
subrecords is described in the evalu-
ation routine formats. Following is

an example of a model statement (macro
definition) edited text record (as out-.
put by phase 3 for use in phases 4

and 5):

Macro Generator Output Record

NAME

Statement: ST&A &B(4+L'&C), FIELDA
where: NAME is the name of the instruc-
tion, &A is a SETC symbol, &B is a macro

prototype symbolic parameter correspond-
ing to a macro instruction operand sub-
list, &B(4+L'&C) is a reference to an
operand in the &B sublist, and &C is a
macro prototype symbolic parameter.

bytes
1 9 1 1 4 11 1 2 1 2 1 1
1
R/L and ' SETA |"a" LCLA |
00} assembler [PUT|04|neme | ¥ Fe02|ST flag [pointer|flag Yy
flags |
name field ST &A
1 2 1 1 1 3 1 1
L decli- 1
| . 1
\PAR| Param={ i ¢ |5y | oooooa |+ | Ly
: flag H
X 4
1 2 1 1 1 [8 1 1 1 1 1
r
|
IPAR| Param=f oyl 'c' | 08 | ,FIELDA® |Y [PUT}0O] Y I®
| eter #
|
&C , FIELDA b no comments
'C' - Character string follows (next byte

contains Length of String in bytes).

PAR - Operand request -
request for macro instruction oper-
and in place of symbolic parameter.

Decimal SDT Flag - Decimal Self Defining
Term.
L' - Length attribute reference

() - End of Statement. Appears at the end
of all class one edited text records.

The macro generator at the completion of the
the Conditional Assenbly (phase 5), passes
to the assembler phases three record types.

Source Record

The Source record contains source text which
may be used to form the right-hand of the
listing image output on SYSPRINT in phase
21B.

This record is the same as

previously
described, with the following

exceptions:

Type Indicator is removed.

Record Length Indicator is adjusted by
one to compensate for the removal of
Type Indicator.

Assembler Edited Text

bytes
2 6 1 variable 1
1
record oper-
assembler name A I
length flags length | name ation
indicator length |
variable 1 variable 1 variable
r
oper- | operand comment
: ation length operand length éomment
L

Record Length Indicator,

of record.

Assembler Flags;

hexadecimal length

bytes
2 1 1 2
hex
FLAGA op ASC pointer
code

FLAGA the same as previously described.

hex op code and ASC,
7 for substituted mnemonic operation

codes.
phase 2.

inserted in phase

All others had value inserted in

pointer, phase 7 inserts the record
length received from phase 5 in this
space, thus maintaining the original
record length value received from
phase 5 and pointing to the first added
on workbucket.,

Appendix D. Record Formats 89

Name Length, length of name field. If this
byte is zero, no name field will exist.
Character Representation of Name (variable),
statement name.

Operation Length, length of operation field.
Character Representation of Operation
(variable), statement operation.

Operand Length, length of operand field. If
this byte is zero, no operand will exist.
Character Representation of Operand
(variable), statement operand.

Comment Length, length of comments field.
If this byte is zero, no comments will

exist. Character Representation of Comments
(variable), statement comments.
Exrror

The Error record is the same as previously
described, with the following exceptions:
Type Indicator is removed.
Record Length Indicator is adjusted by
one to compensate for the removal of
the Type Indicator.

CLASS II

MEND

bytes 1 3

type

D dummy

This record is created to signal the
Dictionary Collection phase 4 to close out
the macro being processed, subset its asso-
ciated Local macro dictionary, and re-
initialize the dictionary.

Type ID (1 byte), X'12' changed in out-
put from phase 4 to X'07'.

MEXIT

This record has the same format as MEND.
Type ID (1 byte), X'07'

Conditional Assembly Edited Text

SET (SETA, SETB, and SETC)
bytes
1 9 1 2 1 1 variable 1]
% # —b #
operand
A B c b E b expression b @

77 77

A - Set Statement flag (X'04')

B - R/L and Assenbler Flags

C - Set variable flag (SETA = X'28"',
SETB = X'29', SETC = X'2A')

90

D - ‘'a' pointer
E - Global or Local flag (When the Set
variable is subscripted, bits 4-7
indicate the subscript number.) Global
='80"' or Local = '00"'.
- Blank (X'32)
- End of statement
AIF
bytes 1 9 variable 1 2 1
type AlF ‘a’
ID dummy expression b pointer | dummy

~7 7

The operand field of Set Statements and AIF
Statements will contain expressions reguir-
ing substitution and/or evaluation. These
expressions are fully described in the ET
by appropriate sub-records. The format of
each of the various types of sub-records is
described in the evaluation routine formats.
The way in which these sub-records are used
to describe an expression is shown in Class
II Section.

AGO

bytes 1 L 2 !

N
>~

9

pointer

;{)pe dummy | dummy dummy

~N\
N

EVALUATION ROUTINE

These sub-records are used to describe ex-
pressions that require substitution and/or
evaluation.

Attributes (L'I'S'T')

bytes 1 1 2 1

Flag byte (type of attribute) see
separate list

Symbolic parameter (X'39') or symbol
flag (X'FA') see separate list

2-byte "a" pointer, if reference is

to an attribute of a symbol, or param-
eter position number in low order byte
of C if the reference is to an attrib-
ute of a symbolic parameter

Dummy

CHARACTER STRING

bytes 1 1 variable
A B C
44
A - Flag byte 'C' = X'27"
B - True length byte (if zero, C will not
exist)
C -~ Data bytes (variable bytes of char-
acters)

DECIMAL, HEX, BINARY, OR CHARACTER SELF-
DEFINING TERM

bytes 1 3

A B

A - Flag byte (Hexadecimal = X'22°',
Binary = X'23', Decimal = X'24"',
Character = X'25')

B - Data bytes, three bytesof data in
binary

VARIABLE SYMBOL

bytes ! 2 1

A B C

A - Flag byte (SETA =X'28', SETB = X'29°',
SETC = X'2A')
B - 2-byte "a" pointer
C - Bits 5-7 for subscripted SETB, indi-
cate in binary form, the particular
bit (0-7) within the byte refer-
enced by B that contains the SETB
evaluation, bit 0 = 0 for Local or 1
for Global
SUBSTRING
bytes
1 variable 1 variable 1 variable 1
A B C: D E F G
A - Begin substring 'BEGSUB' flag (X'2C')
B - Character expression (variable bytes)
C - Begin first operand 'SUBOPE' flag
(X'2D")
D - Expression 1 (variable bytes)
E - PFirst operand completed 'SUBCOM' flag

(X'2E")

F - Expression 2 (variable bytes)

G - End of substring notation 'SUBCLS'
flag (X'2F"')

SUBSCRIPTING

Left parenthesis is replaced by a special
'SUBSCRIPT LEFT PAREN FLAG' (X'03')

Remainder of the format is as previously
described.

CONCATENATION

Occurs automatically by just eliminating the.
period. Two character strings (or Set
variables), one immediately following the
other, will be concatenated, and no conca-
tenation flag required.

OPERAND REFERENCE

Reference in a macro definition model state-:
ment or inner macro instruction to a (proto-.
type operand) symbolic parameter is made by
position.

Operands are numbered as follows:

0 $SYSNDX
1 $SYSECT
2 Symbolic parameter in name field of.
prototype statement
3
I Operand field of prototype statement
203

Keyword operands are given a position
number similar to positional operands.
positions are assigned in the order that
they appear in the operand field of the
prototype statement.

Format of request for substitution of
macro instruction operand in place of
symbolic parameter:

The

bytes 1 2 1

A B null

A - Operand request flag PAR (X'39')
B - Operand number

EVALUATION ROUTINE OPERATOR HIERARCHY

The hierarchy of operations performed in
evaluating expressions in phase 5 is sche-
matically illustrated by the following.

Appendix D. Record Formats 91

OPERATORS: the number of positional operands

1 A in the prototype statement
LEVEL: operand.
2| %/ C A variable number of operand
value edited text records. 1In
3| +- a macro instruction, there is
one operand value edited text
4| EQ NE LT GT LE GE record for each macro instruc-
tion operand. In a macro proto-
5| NOT type statement, there is one
operand value edited text record
6 | AND for each keyword variable param-
eter appearing in the operand
71 Or field of the prototype statement.
There can be source oOr error
8| (4 records interspersed between any
operand value record.
91)
Example:
10
> source oper]cnd 0per20nd source opearand ope;ond opesrand opebrand
MACRO INSTRUCTION
General
D End of macro instruction or
bytes prototype statement edited text
1 /2/ 171 J2 variable variable record.
! assembler gt
|)|:')p'3 R/L flags pointer] E] Ej bytes 1 2 1
44 14 4§
A B C
PROTOTYPE STATEMENT
General A - End of edited text flag (X'0C')

byt 1 2 7 . bl B - Record length 4 bytes
yres variaple C - Number of keyword operands in instruc-

4 ~+ 4
tion operand
type assembler
R/L X
1D flags
L L

OPERAND VALUE RECORDS

-+~

~
-~

Type ID Macro Instruction '05' All operand records but the last
Prototype Statement '06' bytes ~ next operand
B If a symbol appears in the name
field of a macro instruction, ! 2 £ ! 2_7
a sub-record will appear in the type assembler operand ype asse
following format: D R/L flags B value ! 1D R flag
bytes 1 variable 1
14 Last operand record
® symbol 5 bytes
subrecord 1 2 7
o type | o /L assembler B operand end of M~|
® Positional macro instruction P Flags valve recerd
operand follows (X'FB')
Symbol A sub-record describing the sym-
Subrecord bol in the (macro instruction)
operand value format Type ID Operand record flag (X'OB')
b o) Blank (X'32') B Position or keyword flag
X Only keyword operands are de-
scribed in the macro prototype ® Positional (X'FB')
statement edited text record.
This field contains a count of ® Keyword (X'FC')

92

Operand
Value

Macro instruction and prototype
operands are described by appro-
briate sub-records. The format
of the various sub-records are
described under Operand Value
Formats.

EOB - End of Block
A macro instruction or prototype may be
continued in the next block. An 'EOB' flag

(X'FE') will appear where 'OPERAND RECORD
FLAG' normally appears.

SUBLIST OPERANDS

bytes
1 2 7 1 1 1 5
b Rt]
type assembler |
|é R/L flags B | dummy C | dummy ll
A R
First
1 variable]
h
f —t
I operand
: (value !
| — b 3 T
AN
X'02'
bytes
1 2 7 ! variable 1
e T
type assembler operand
1D R/L flags z value !
- .
Actual assembler internal
120y 01
bytes value (e.g. X'30" not X'01") \

1 ‘2‘ “7‘ 1 vari:c:ble 1 1 1
type assembler operand ,
ID R/L flags z value) N

B Bl 3

—31
Last Must be included if not _/

last operand

NOTE: Source records may appear between
Sublist operands

Type ID Operand record flag (X'OB')

B This is the positional or key-
word flag which appears only this
time for the entire sublist

® Positional (X'FB')
® Keyword (X'FC')
C Sublist flag (X'F0')
Z Continue Sublist flag (X'F9')
Operand Described in operand value
Value format.
N' The number of operands in the
Sublist.

OPERAND VALUE FORMATS

The following formats are used to describe
macro instruction and macro prototype oper-
ands. Each operand value record must be
preceded by a (B or flag except for
macro instruction sublist operands in which
only the first sublist operand is preceded
by a or (® flag.

Character String

bytes 1 1 1 variable
44
fype 1~ | string character
i c length | string
—]

Type See type byte table
'C' Character String Flag X'27"'
String Length Length of character string
in bytes
Character String
Symbol
bytes
! 1 2 3 1 1 1to8
7
symbo | "a" vt | symbol | symbol
fype flag pointer dummy ¢ length | name
— —
Type See type byte table

Symbol Flag FA

"a' Pointer Dictionary location of symbol
record

Dummy Not used

'C' Character String Flag X'27'

Symbol Length Length of symbol name in

bytes
Symbol Name
Decimal, Character, Hexadecimal, or Binary

Self-Defining Term

bytes
1 1 3 1 1 variable
2 5f
binary term byte rep.
value length of term

type flag

Type See type byte table
Flag '22' for hexadecimal self-defining

'23"' for binary self-defining
'24' for decimal self-defining
'25' for character self-defining
Binary Value Binary value of term
'C' Character String Flag X'27'
Term Length Length of term in bytes
Byte Representation of Term

Appendix D. Record Formats 93

Omitted Operand

bytes 2 1 1
type ' length
Type See type byte table
'C' Character String Flag X'27'
Length 00
Operands to be Evaluated
bytes 2 variable 1
evaluation .
flag expression y

e

Evaluation Flag X'26'

Expression In evaluation routine format
Reyword
bytes
1 1 1 1t07 1 1 varigble
—- {
® el L :zz:zord = dummy | value
—— t
Keyword X'FC'
'C' Character String Flag xX'27'
L Length of keyword name + one
Keyword Name
= xrac!
Dummy
Value The keyword value is described by

operand value formats. Value of a
keyword may also be a Sublist.

ASSEMBLER EDITED TEXT FOR LITERAL

bytes

2 6 1 8 1 1 variakle

)} 1}]}

= ¢ {¢

bl
RL | Flags | A 8 c D | =LITER ?

)] I} }1L

Ly i AA)

R/L. - Record Length, same as previously

described.
Assembler Flags -~ Same as previously
described.
A - Name Length (X'08'). Name length will
be '00' when there is no reference to

the Location Counter (*) in the literal.
B - Statement Name Field, contains state-
ment number when A is equal to '08'.
The statement name field is dropped
from the record when A is equal to
'00".
C - Operation Length,
type record.

always '00' for this

94

D - Operand Length, hexadecimal represanta-
tion of operand length. LITERAL, vari-
able length XXrecord containing the
literal in character format.

PUNCH ASSEMBLER EDITED TEXT (94 bytes)

Reformatted version of normal Assembler
Edited Text Records, accomplished in phase

10B.
bytes

8 5 1 80
i i+ —

R/L and

assembler | zeros | x's0t [£° ! laﬁsed

flags punc

—_) Y 11

LA LA 1

R/L - Record Length X'5E'

Collapsed Punch - means every double apostro-
phe (") and every double
ampersand (&&) 1is reduced
to a single apostrophe or
ampersand.

TITLE ASSEMBLER EDITED TEXT (108 bytes)

Reformatted from normal Assembler Edited
Text Records in phase 10B.

bytes
2 1 102 3
— - ‘\
R/L FLAGA| heading| B BB
—— 3 —

2%

R/L - Record Length X'6C'

Heading - The information in the operand
field of the title statement,
including beginning and ending
quote marks.

B - A three byte field containing a blank,
followed by a single apostrophe, and
followed by another blank to ensure
termination of the scan.

REGISTER AVAILABILITY TABLE/RECORD (83 bytes
including 3-byte header)

Header

R/L FLAGA
2 bytes |1 byte

bytes
I T R S | LI S S B S R N e

GRIGR|GR|GR|GR|GR[GR [GR | GR|GR |GRIGR|GR | GR | GR|GF.
olv|213|4|5]|6|7]8F9f10]11|12]13}14]15

GRO GRI GR2 GR3
|
GR4 GRS ' Gré GR7
GR8 GR9 GRI10 GRI1

GR12 GR13 GR14 GR15

The Register Availability Table/Record
consists of two parts: a 16-byte Availa-
bility Table, and a 16 times 4-byte Value
Table.

The 16 bytes of the Availability Table
are numbered O through 15 to correspond to
General Register (GR) O through 15: Byte
i = 0 indicates that General Register i
(GRi)is not now in use as specified by
Assemble USING and DROP statements, and
Byte i # O indicates that General Register
i (GRi) is in use.

The first four bytes of the Value Table
correspond to General Register O (GRO), the
second four bytes to GR1l, etc. The four
bytes corresponding to a General Register
have the following meaning when the General
Register is in use:

Byte 1 ESD-ID (For calculation of S-type

Adcons.)

Bytes 2-4 Location Counter Value as speci-
fied in the pertinent USING
statement.

R/L - Record Length X'53*
FLAGA - See Type Indicator and FLAGA
appendix,

SWITCHES TABLE/RECORD
bytes
2 1 1 1 1 1 1 1

R/L FLAGA| B C D E F G

R/L - Record Length X'09'
FLAGA - See Type Indicator and FLAGA
appendix,
Flags B through D - the current status of
the listing options:

B ‘00’ ON
'Fr' OFF

C ‘00’ GEN
'FF' NOGEN

D '00’ DATA
'FF' NODATA

indicates whether the as-
sembler should take forms
control action correspond-
ing to the assembler SPACE
and EJECT instructions:

Flags E and F -

E ‘00" Associated instruction is
not SPACE
'FF' Associated instruction is
SPACE
F '00" Associated instruction is
not EJECT
'FF! Associated instruction is
EJECT

Flag G - The value in the operand field of
SPACE statement, expressed in bi-
nary form.

OBJECT RECORD (20 bytes)

bytes
2 1 1 3 6 3 3 1
L A % ¢ 35
R/L |FLAGA| B C D E F FLAGG
- y R

pS 3
AY W

R/L - Record Length X'14’
FLAGA - See Type Indicator and FLAGA

B -

appendix.
ESD/ID Field. Normally indicates the
current ESD identification number.
When X'00', indicates that this state-
ment should not be punched (i.e., state-
ments in COM or DSECT control sections).
Location Counter Field. The value that
will appear in the Location Counter
Field on a listing. Normally this is
the appropriate value of the Location
Counter. However, for some statements
(e.g., USING, END, EQU), this repre-
sents the value of the first or only
expression in the operand field of the
statement.
Machine Instruction Field. Normally
this field contains a machine instruc-
tion in object format. As a result of
the CNOP instruction, this field con-
sists of zero to three half-word fields,
containing X'0700'. If the object
record is being used for alignment, it
will contain six bytes of zero.
Effective Address Field Number 1. Under
normal conditions, this field will con-
tain the value that will appear in the
ADRRl field on a listing. This is the
effective address of the first operand
of a statement, if applicable, or blank.
If the object record is being used for
alignment, it will contain zero.
Effective Address Field Number 2. This
field usually contains the value that
will appear in the ADRR2 field on a
listing. This is the effective address
of the second operand of a statement,
if applicable, or blank. If the object
record is being used for alignment, the
low-order byte will contain a number
from 1-7 in binary form, indicating the
number of bytes of zeros to be used
from fields D and E for alignment.

Flag G -

Bit

1-4

Description
0000 Will appear only if bits 5-8
are all ones.
Not used.
Use the first half-word of
field D for output (e.qg.,
RR instructions, one CNOP
'0700' half-word).
Not used.
Use the first two half-words
of field D for output (e.g.,
RX, RS, and SI instructions

0001
0010

0011
0100

Appendix D. Record Formats 95

Bit

926

0101
0110

0111
1000
1001
1010
1011
1100
1101
1110
1111

0000

0001
0010

Description Bit

or two CNOP '0700' half-
words) .

Not used.

Use the first three half-
words of field D for output
(e.g., S8 and three CNOP
'0700' half-words).

Not used.

Not used.

Not used.

Not used.

Not used.

Not used.

Not used.

Not used.

Will appear only if bits
5-8 are all zeros.

Do not print Location
Counter (Field C) (e.g.,
DROP statement, bad END
statement, etc.).

Not used.

only field E should appear
on a listing.

0011

0100

0l01
0111
1000

1001
1010
1011
1100
1101
1110
1111

Description

Both fields E and F should
appear on a listing.
Indicates that this object
record is a DC (this object
record appears in main stor-
age only during phases 21B,
21C, and 21D).

Not used.

Not used.

Indicates that this object
record is being used for
alignment (e.g., 1-7 bytes
of zeros or 0-3 CNOP '0700'
half-words).

Not used.

Not used.

Not used.

Not used.

Not used.

Not used.

If the punch buffer is par-
tially full or full, output
on SYSPUNCH. Then use a
complete SYSPUNCH record for
this statement (e.g., DS,
ORG, and LTORG statements).

APPENDIX E. WORKBUCKET FORMATS

STATEMENT WORKBUCKET (8 bytes) Set in
: Bit Phase Description
bytes
2 1 2 3 13 8 ESDP-- ESD Processed Flag.
T ESD- T T T 0 Unprocessed
Flcl:q D contents peculiar | location counter 1 Processed
:‘ No. to statement value
. ‘ e 14 10 Statement bucket adjustment.
0 No statement bucket
Location Counter
Flag value has been ad-
justed by E10
Set in 1 Statement bucket Lo-
Bit Phase Description cation Counter value
has been adjusted by
1-3 7 WBT- Workbucket type E10
001 Indicates Statement
Workbucket 15-16 8 NSL- Name in Symbol List
Flag. Will be used
4-6 7 Alignment, number of bytes in ESD processing.
to be inserted before this 00 Statement name not
statement to align the found in Symbol List
statement on proper bound- 01 Not used
aries. 10 Name found and no
error detected
7 7 DC/DS Switch 11 Name found and error
0 DC/DS detected
1 Other
ESD-ID NO. The External Symbol Diction-
8 7 *Location Counter reference ary identification number
in literal) set in Phase 8
0 None (no literal)
1 Yes Contents Peculiar to Statement
9 8 ADJCA- Adjective Code A. For EQU's, the content is the length of
This code is meaning- the first term (flag byte is not changed).
ful only if this For CSECT, START, COM, DSECT, ENTRY, or
statement has a name. EXTRN, the low-order 4 bits of the two-
0 Name not defined byte field signify the type of statement
within DSECT or COM as follows:
1 Name is defined within
DSECT or COM Hexadecimal
Digit Meaning
10-11 8 ADJCB- Adjective Code B.
This code is meaning- ‘0! Named CSECT or
ful only if this Named START
statement has a name ‘1 ENTRY
or is an EXTRN. '2! EXTRN
00 This statement is a "4 Unnamed CSECT or
CSECT or START Unnamed START
0l This statement is an ‘5! COM
EXTRN A DSECT
10 This statement is a
DSECT For DC/DS, the content is the length
11 This statement is attribute of the first constant of the
none of the above first operand. For CNOP, the low-order
hexadecimal digit contains the number
12 8 and/ Location Counter wraparound. of bytes to be generated to force proper

or 10

0
1

No LC wraparound
LC wraparound

alignment. For Machine Instructions,
the content is the length attribute of

Appendix E. Workbucket Formats 97

the name,

if any.
low-order byte is
punched before the ESD cards.

For REPRO and PUNCH,
'FF' if the card is

Informa-

tion is used by phase 21B.

Location Counter Value

The current value
of the Location
Counter. Set in
Phase 8, adjusted
in Phase 10.

DC/DS OPERAND WORKBUCKET (16 bytes)

bytes
1 1 3 3 1 1 1 2 2 1
A B c| o E F |l o H I J
A - Flag
Set in
Bit Phase Description
1-3 7 WBT- Workbucket type
010 Indicates DC/DS
Operand Workbucket
4 7 LMP- Length Modifier
Present
0 No. If this is a P
or Z type constant
and this operand
field contains multi-
ple constants, addi-
tional constants may
have different lengths
than the first con-
stant. LMP = 0 only
when LMM = 0.
1 Yes.
5 7 LMM- Length Mode Modifier
0 Length field contains
total number of bytes
for this operand
1 Length field contains
total number of bits
for this operand
NOTE: This is used in de-
termining the increment of
the Location Counter £from
operand to operand in a DC/
DS Statement.
6 8 Reference to Location Counter
0] No workbucket contains
reference to * (Loca-
tion Counter)
1 At least one work-
bucket contains refer-
ence to *
7 7 Not used

98

Set in

Bit Phase Description
8 7 or 8 Processing indicator
0 Continue processing
1 Process no further
B - Type of Constant Translated

Bit

Hexadecimal
Translated Form

Printer Graphic
Original Form

00!
o
|02|
.03.
l04l
IOSI
l06|
1071
'08'
109!
ioAl
IOBI
IOCl
IFFI

NP IHEHONGE XA

Any other
alphabetic
character

Length Field, meaning of the constants
depends upon LMM switch.

Duplication Factor, set in phase 7 or 8.
Left blank if an expression, phase 8
evaluates in this case.

Number of Constants in Operand, binary
notation. Set in phase 7.

Pointer, pointer to quote or left paren-
thesis preceding the first operand con-
stant in the edited text portion of

the record. Placed in phase 7.
Exponent Modifier

Set in

Phase Description

1

2-8

H -

Bit

2-1

7 or 8 Sign indicator
0 Plus

1 Minus

7 or 8 Base 10 exponent modifier
NOTE: Left blank if an ex-
pression, phase 8 evaluates
in this case.

Flag

Set in
Phase Description
7 or 8 Scale modifier sign
0 Plus
1 Minus

1 7 or 8 Scale modifier value

Set in

Bit Phase

12 7
13-15 8
16 8
I -

Description Bit
NOTE: Left blank if an ex- 1-3
pression, phase 8 evaluates
in this case.
VWB- Variable Workbucket 4
Flag
0 No variable work- 5-8
buckets follow
1 Variable workbuckets
follow
Alignment, number of bytes
to insert before this oper-
and.
TNT
0 DS with constant
1 DS with type but no

Length Modifier Value,

upon LMP switch.
(explicit or implicit) length of the
first constant of the first operand.

When LMP = 1,

cont

constant

constants depend
When LMP = 0, contains

ains length modifier

value per constant (bits if LMM = 1,
bytes if LMM = 0).

expression,
case.
J - Flag,
Set in
Bit Phase
1 7
2 7
3 7
4 7
5
6-8 7

phase

Express
factor

Left blank if an
8 evaluates in this

meaningful if VWB = 1

Description

ion for duplication

Set in

Phase

Description

Workbucket type

000 Indicates Operator-
Delimiter Workbucket

Not used

Workbucket identity

0000 + (plus)

0001 ~ (minus)

0010 * (asterisk)

0011 / (slash)

0100 , (comma)

1000 ((left parenthesis)

1001) (right parenthesis)

1011 b (blank)

NOTE: Parenthesis used

sytactically to enclose dupli-
cation factor, length, scale,
or exponent expressions, or

to enclose adcon(s) are not
marked by an Operator-
Delimiter Workbucket.

The comma workbucket is
used wherever a comma is
found in a machine instruc-
tion operand and when it
separates symbolic constants
in an adcon. It is also
used as a separator between
duplication factor, length,
scale, and exponent expres-
sions when present.

The blank workbucket is
used as a delimiter for the
operand (there may be multi-

OPERATOR-DELIMITER WORKBUCKET (1 byte)

one byte

o

N
-

@

Appendix E. Workbucket Formats

0 No ple operands).
1 Yes
Expression for length SYMBOLIC LENGTH WORKBUCKET (4 bytes)
expression
0 No
1 Yes bytes 1 1 f
Expression for scale A B ¢
modifier l
0 No
1 Yes A - Flag
Expression for exponent Set in
modifier Bit Phase Description
0 No
1 Yes 1-3 7 WBT- Workbucket type
100 Indicates Symbolic
Not used Length Workbucket
Number of types of modifier 4 LSV~ Length of Symbol/
expressions present Value Switch
7 0 Low-order byte of

value field contains
length in bytes less
one, of the symbol
whose length attri-
bute is desired in
the text.

929

Set in
Bit Phase
8 or 1
10

Description

Value field contains
length attribute,

(true length minus
one) of the symbol.

5 8 or PHS-
10 0

Phase Switch
Length attribute

needed by phase 8
in connection with
expressions including
symbols requiring
previous definition.
1 Length attribute
needed by phase 10,
but not by phase 8.

6 10 XREF-

Cross Reference Switch

0 Cross reference has
not yet been made

1 Cross reference has
been made by phase 10

7-8 Not used
B - Pointer, pointer to
length attribute is
pointer is relative

the symbol whose
desired. The
to the first byte

of the operand field in the assembler
edited text record and points to the
left-most byte of the symbol.

C - Value, Contents are
LSV switch.

dependent upon the

SELF-DEFINING TERM WORKBUCKET (4 bytes)

bytes 1 3
]
|
A | B |
| |
A - Flag
Set in
Bit Phase Description
1-3 7 WBT- Workbucket type
101 Indicates Self-
Defining Term
Workbucket
4-6 Not used
7~-8 7 Class
00 Decimal
0ol Hexadecimal
10 Binary
11 Character
B - Value, contains the true 24-bit value.

For the C (Character) Type,
bytes are in EBCDIC,
This workbucket is

translated code.

these three
not in internal

processed in phase 7.

100

OPERAND FIELD

WORKBUCKET (6 bytes)

SYMBOL

bytes 1 1

1 3

C D

A - Flag

Set in

Bit Phase

1-3 7 WBT-

110

4 Lsv-

8 or 1
10

XREF-

8 or ELS-

10
00

10

ESD-ID,

ESD identification number.

set in phase 8 or 10,

Description

Workbucket type
Indicates Operand
Field Symbol Workbucket

Length of Symbol/
Value Switch
Low-order byte of
value field contains
length in bytes less
one of the symbol
whose ESD-ID and/or
Location Counter
value is desired
Value field contains
Location Counter
value of the symbol.
This value is un-
adjusted if PHS =
and is adjusted if
PHS = 1

0,

Cross Reference Switch
Cross reference has
not yet been made.

LAP field contains
pointer to left-most
byte of the symbol in
the assembler edited
text record.

Cross reference has
been made by phase 10.
IAP field contains
length attribute of
symbol.

Excess Length Switch

LAP field contains
length attribute of
symbol (true length
minus one)

LAP field is too small
to contain length
attribute (true length
is greater than 256)

contains
An absolute

term (evaluated in phase 8) is given
an ESD-ID number of zero.

contents

C - LAP, Length Attribute Pointer,
depend upon XREF switch.
D - Value,

contents depend upon LSV switch.

LITERAL WORKBUCKET

(6 bytes)

bytes 1 1T 1 3
T T
Al B | c !D{
]]
A - Flag
Set in
Bit Phase Description
1-3 7 WBT- Workbucket type
111 Indicates Literal
Workbucket
4 LPE-~ Literal Pool/ESD-ID
Switch
8 0 ESD-ID field contains
literal pool number,
value field contains
displacement relative
to literal pool num-
ber and string
NOTE: FEach LTORG or END
produces a literal pool.
These each have a number
(literal pool number); how-
ever, the number is not cur-
rently used because the
order of the literal table
segments on SYSUTL implies
the information.
10 1 ESD-ID field contains
ESD-ID number, value
field contains Loca-
tion Counter.
5-6 Not used
7-8 7 Literal String Numbers

B - ESD-ID Field,

switch.

00 l-byte string
01 2-byte string
10 4-byte string
11 8-byte string

contents depend upon LPE

C - Set aside for length attribute of

literal,

switch.

filled in phase 10.
D - Value Field,

contents depend upon LPE

LTORG STATEMENT WORKBUCKET (16 bytes)

bytes 3 3 3 3
type not used A B C D
ID

e 4 byfes

Workbucket
010

Type ID

type

Indicates LTORG

Statement Workbucket

Total Displacement of 8-byte Chain, this

field indicates the sum of the object
lengths of all literals in the 8-byte
string in the associated literal pool.

Filled in Phase 7.

B - Total Displacement of
same as A, except for
C - Total Displacement of
same as A, except for
D - Total Displacement of

same as A, except for

4-byte
4-byte
2-byte
2-byte
l-byte
1-byte

Chain,
string.
Chain,
string.
Chain,
string.

EXAMPLE OF AN ASSEMBLER EDITED TEXT RECORD

AND ATTACHED WORKBUCKETS

l Name I Operation l Operand Field
[A | DC | 3FL(A+ (B+ Q) '1,2
V.L. l—» workbuckets attached
edited }
text A B F C C F C |
records il
statement DC/DS + (B +
workbucket workbucket
1
} Flc]|cl|c
L

C

) J b
Indicates other modifier expressions may follow (automatic)
indicates end of workbuckets (automatic)

EVALUATION WORKBUCKET

bytes 1 8
4 F—
Plspe value
-

77

Type ID - The first three
binary value of
cates that this
Workbucket:.

Value - The value field

Field

Appendix E. Workbucket Formats

bits have the
011, which indi-
is an Evaluation

has two formats.

One format is for evaluating

101

DC Fixed - or Floating-point constants.

Value

Sign

102

bytes

The other format is for evalu-
ating an expression.

For Fixed- or Floating-point
constants, the 8-byte value field
contains the constant value eval-
uated in phase 21A. For expres-
sions, the 8-byte value field
will have the following format.

4 1 1 1 1

A

77
value sign |[ESD/ID{ sign |ESD/ID
/L

77 « A J

Y L4
first pair second pair

The value resulting from the
evaluation of an expression ap-
Pearing in the operation field
of a statement.

ESD/ID Field - The contents of
this field depend upon whether
the expression was absolute,
simple relocatable, or complex
relocatable.

For absolute and simple relo-
catable expressions involving
no unpaired terms, the first
5ign-ESD/ID pair of bytes will
be X'0000', and the second pair
of bytes will not be used.

For simple relocatable expres-
sions involving an unpaired term,
the sign-byte of the first Sign-
ESD/ID pair will indicate if the
relocation factor should be
added or subtracted from the
contents of the value field.

The ESD/ID byte of the first
Sign-ESD/ID pair will contain
the External Symbol Dictionary
Identification number of the
unpaired term. The second Sign-
ESD/ID pair will contain X'0000°'.

For complex relocatable ex-
pressions, there can be up to

sixteen Sign-ESD/ID pairs. In
any case, the last pair must
contain X'0000' to terminate the
scan. The Evaluation Workbucket
is fixed length, 9 bytes. If
there is more than one Sign-ESD/
ID pairs, it will be necessary
to create more evaluation work-

buckets.

Example, showing two Sign-ESD/ID pairs.

sign ESD/ID sign ESD/ID

value
011 field | 01 - 03
sign ESD/ID
|
on :iil:ie 00 | 00 not used
Example, showing machine instruction use.
Statement Operation Operand field
Input STM | GRA, GRB, OCT +8
variable
length l—’ workbuckets attached
edited
text A F Cc F [F C D
record
GRA ’ GRB ’ ocCT + 8
Output
variable
length l—— workbuckets attached
edited
text A 1 C 2 C 3 C
record
GRA ’ GRB ; OCT+8 %
A - Statement workbucket
F - Symbol workbucket
1 - Evaluation workbucket 1
2 - Evaluation workbucket 2
3 - Evaluation workbucket 3

Value

(Hexadecimal)

FF

FE
FD

FC
FB

Description

End of Statement Record
Flag

End of Block

No Evaluation Necessary
Flag 'PUT'

Keyword Flag (K
Positional Flag (P)

APPENDIX F. MACRO GENERATOR SCAN CONTROL FLAGS

Value
(Hexadecimal)

FA
F9
FO
F8

EB
EBFF

Description

Symbol Flag

Continue Sublist Flag
Sublist Flag

End of Statement Field
Flag

End of Buffer Flag
End of Data Set

Appendix F. Macro Generator Scan Control Flags

103

APPENDIX G. MACRQ GENERATOR VALUE ASSIGNMENT FOR
EXPRESSION EVALUATION

CHAR DEC HEX CHAR DEC HEX

Period . 0 0 Null Symbol & Evaluation Flag NULLSYM | 38 26
Right Parenthesis) 1 1 Character String c" 39 27
Left Parenthesis (2 2 SETA SETA 40 28
Subscripted Left Parenthesis [3 3 3 SETB SETB 41 29
Plus + 4 4 SETC SETC 42 2A
Minus - 5 5 Comma Comma | 43 2B
Multiply (AST) * 6 6 Begin Substring BEGSUB | 44 2C
Divide (Slash) / 7 7 Begin Substring Operands SUBOPE | 45 2D
Equal EQ 8 8 First Operand Completed SUBCOM| 46 2E
Not Equal NE 9 9 Second Operand Completed SUBCLS | 47 2F
Less Than LT 10 OA Actual Internal Value Right ACT,) | 48 30

Parenthesis Used Only on Sublist
Greater Than GT 1 OB

Arithmetic Expression (absence AE 49 31
Less Than or Equal to LE 12 oC indicates character expression)
Greater Than or Equal to GE 13 oD Blank BLANK | 50 32
Not NOT 14 OE Type Attribute Reference T 51 33
Or OR 15 OF Length Attribute Reference L 52 34
And AND 16 10 Integer Attribute Reference N 53 35
Hexadecimal Self«Defining Term X" 34 22 Scale Attribute Reference s' 54 36
Binary Self-Defining Term B" 35 23 Number Attribute Reference N* 55 37
Decimal Self-Defining Term DECINT | 36 24 Count Attribute Reference K* 56 38
Character Self-Defining Term CsD 37 25 Symbolic Parameter Reference PAR 57 39

System List SYSLIST | 58 3A

104

APPENDIX H. MACRO GENERATOR VALUES OF PARAMETER TYPE-ATTRIBUTES

Decimal

Type Value

P 0

z 1

E 2

D 3 FLOATING
K 4

F 5

G 6 FIXED

H 7

S 8

A 9

\ 10

Y 11

R 12

W 13

| 14

C 15

Q 16

B 17

J 18

X 19

M 20

T 21 t
U 22 These six types must
o 23 be last on the list
N 24

u 25

Appendix H. Macro Generator Values of Parameter Type-Attributes 105

APPENDIX I. TABLE FORMATS

Table Identification and Blocking Sizes Block Length (2 bytes) - Hexadecimal length
MINIMUM of block.
ﬂZE#J Macro Mnemonic Flag (1 byte)
TABLE ID BYTES
Bit Description
Macro Mnemonic Name Table LOCATION 100
Segments (Unsubsetted)
Macro Mnemonic Name Table LOCATION 100 0-1 10 Undgflned macro mnemgnlc
Segments (Undefined-Subsetted) 11 Defined macro mnemonic
Macro Mnemonic Name Table LOCATION 1000
Segments (Defined-Subsetted) NOTE: All macro names in subsetted
table produced by E2A are marked
Relevant Ordinary Symbol LOCATION 200 as "DEFINED".
Toble Segments
Macro Dictionaries LOCATION 256 2_4 Not used
(Unsubsetted)
Macro Dictionaries LOCATION 200 .
(Subsetted) 5-7 Actual length minus one of macro
mnemonic
Literal Table Segments X'09" 800
Symbol List Table Segments x'o 160 Macro Mnemonic - Macro mnemonic in character
. . . format (variable)
Symbol List Table Sections X'02 1000 'EB' - End of Block Flag (1 byte)
']
External Symbol Dictionary X'03' 260 FF' - End of Data Flag (1 byte) ‘. tl:le last
Segments block of macro names are indicated
by a l-byte End of Data Flag ('FF')
Literal Base Table X'04! 131 following the End of Block Flag
('EB'").
Symbol Table Segments X'05' and 3000
(Adjusted and Unadjusted) LOCATION
RELEVANT ORDINARY SYMBOL TABLE SEGMENT
Literal Adjustment Table X'06' 84
Cross-Reference Table Records X'07! 161
Relocation Dictionary Table X'08! 181 one entry
Records bytes
1 variable 1 variable 1 variable
4f 5F ~5§-
L symbol L symbol L symbol

L 1) s

MACRO (MNEMONIC) NAME TABLE SEGMENT

The Relevant Ordinary Symbol Table Segment

variable no,

r__ofm"hs —_—] is made up of a variable number of length
- and symbol entries.
block macro macro
Iength mnemonic mnemonic 'EB' 'FF'
flag L - The length of the following symbol in
¥ bytes.
2 1 variable Symbol - The character representation of
bytes the symbol.

106

LITERAL TABLE SEGMENTS

bytes

2 1 1 2 3 2 3
1
Literal | ¢ 1

gment

A 1 Table | umber | B C D E
1D [

2 3 2 3 variable

LIST

-
@
T

A - Next available location in literal
table stack, initial value X'1l6'.
Literal Table ID - Literal table identifi-
cation (09).
Segment Number - Not currently used by I/0
package.

B - Pointer to first entry in 8-byte chain.

C - Displacement value of 8-byte chain
(i.e., the total object length occupied
by the literals in the 8-byte chain,
including duplication factor and multi-
ple constants) .

- Pointer to first entry in 4-byte chain.

- Same as C, except as applicable to

4-byte chain.

- Pointer to first entry in 2-byte chain.

Same as C, except as applicable to

2-byte chain.

- Pointer to first entry in l-byte chain.

- Same as C, except as applicable to 1l-
byte chain.

HIZ O QM™m ®mU
1

List as follows:

bytes
2 3 ,_J__\ 2 i variable
J K L L M N

° |

- Same chain forward pointer.

Object displacement within chain.
Not used.

- *in literal switch.

- Statement number. Present only if
switch L' = 1. The statement number
is obtained from a counter internal to
the phase. Phase 9 generates the
statement number in the same way.

N - Literal source length.

O - Literal source to the right of the

equal sign.

2EEHERY
I

SYMBOL LIST TABLE SEGMENTS

bytes variable no, 8-byte entries
1 B 2 8 8 8 3
1f §f 4f
type segment symbol C C c C
ID count count
(a (L £

77 77 77

Type ID - Type Identification (01l) indi-
cates Symbol List Table Segment.
Segment Count - Not currently used by I/0

package.
Symbol Count - Number of 8-byte symbol
entries.

C - 8-byte symbol entries, including
symbols used in symbolic length attri-
bute references for the following:

1. CNOP operand

2. ORG operand

3. EQU operand

4. DC/DS/CCW length, scale, or exponent
modifier expressions

5. DC/DS/CCW duplication factor
expressions

6. Named CSECT, START, DSECT

7. Symbols in operand field of EXTRN
statements

Symbol List Segment Entry (Sample 5-
Character Symbol)

bytes
1 1 1 1 1 1 1 1

first second third fourth fifth
char. char. char, char, char,

NOTE: Symbols are left-justified, followed by blanks ()
if there are less than eight characters

SYMBOL LIST TABLE SECTIONS

bytes
1 1 2 6 variable
f
type |section symbol hash
ID count count pointers c j

Type ID - Type Identification (02) indi-
cates Symbol List Table Sections.
Section Count - Not used.
Symbol Count - Number of l6-byte symbol
entries.

Hash Pointers (2 bytes per 48 symbol entry

bytes) - Pointer to symbol address in
symbol list table (see hash
table) .

C - l6-byte symbol entries.

SYMBOL LIST TABLE ENTRY

bytes 1-1/2 1/2 2 1 3 8

pointer

QO —]

rl s

Pointer - Relative to the table origin,
pointing to the next entry in
the chain. The pointer is posi-
tioned for use after flag and
adjustment code are marked out.
It is abbreviated because

Appendix I. Table Formats 107

va wx
!

equal to one,

entries are aligned on double-
word boundaries.
Flag - Zero when not yet evaluated, when
indicates value and
length attribute are present (see

Statement Workbucket) .

Length attribute of symbol.
External Symbol Dictionary Identifica-
tion.
- Value of symbol.

- 8-byte symbol entered in phase E7I

(see Symbol List Segment Entry).

EXTERNAL SYMBOL DICTIONARY SEGMENTS

bytes

1 3 variable
Y
1/
tabl i
e | ot used varl?ble
ID entries
L
1/

Table ID - X'03’

Variable Table Entries

MPE LA B | c |symbol

Type Code:

HEX MNEMONIC DESCRIPTION

‘00! SD Named CSECT or START
instruction

‘o1’ LD ENTRY symbol

‘02! ER EXTRN symbol

'03’ Not used

‘04’ PC Private code unnamed con-
trol section

'05' CM Common (COM) control
section

‘06’ Pseudo registers not cur-
rently implemented

'07°' DS Named DSECT

‘08! vC V-type address constant
symbol

‘09’ BD Unnamed (illegal) DSECT

A - For all but type LD, ER, PR,
current value of Location Counter for
this control section.

and VC;

For LD, low-

order byte contains ESD/ID for the

control section in which the symbol is

defined.

ward,

LD,

this byte contains a flag that is

CLF for all but LD,
ESD/ID of the control section.
numbers are assigned sequentially down-
starting with 255 for named or
unnamed DSECT entries (e.g.,
The numbers are assigned upwards begin-
ning with 1 for SD, PC,

ER, and VC; the

and CM. For

set in phase 9I during processing of
ENTRY (LD) symbols.

108

ESD/ID

DS or BD).

C - HLF for all but LD, ER, and VC; the
highest value yet held by the Location
Counter for this control section.

This indicates the length in bytes of
this control section. Filled in
phase 8. For LD, this field contains
the (adjusted) assembled address of the
entry point symbol in the symbol field.
Filled in phase 9I.
Symbol - The symbol in byte format, that
is associated with this table
entry.

SYMBOL TABLE SEGMENTS

iy

bytes 1 1 varilcuPle variable
A B C D §
{L
v

A - Table Identification ('05') indicates
Symbol Table Segment.

B - Segment flag; AA if this is not the
last segment or FF if this is the last
or only segment.

C - Hash table 2-byte address entries.

D - Item Entry

bytes
2 1 2 1 3 8
l’ll]I# J’l’ llr,
pointer | FLAG A ESD/ID value symbol
d L ’l’l 'I‘l /L

Ptr - Forward pointer to next entry in

same chain, if applicable.

Flag - Identical to the second byte cf the
flag used in the Statement work-
bucket. However, it is created in
phase 9, and not copied from the
Statement workbucket.

A - The length attribute of the symbcl

located in the symbol field.

ESD/ID - External Symbol Dictionary

Identification.

Value - In phase 9, this is the relative
address. 1In phase 9I, this is
adjusted to the final assembled
address.

Symbol - Same as shown for Symbol List

Table Segments.

LITERAL BASE TABLE

bytes
5 3.5 1 3

77

J\
™

P
f

not
~ used

1D

—o o]

ESD/ID| location A B C

£
K 37 I I~

Table ID - X'4',
Table.
ESD/ID - The ESD/ID number of the control
section where the literal pcol is
located.

IL 3 /L { £ 4L
v. i

indicates Literal Base

Location - This is the relative address
obtained from the Statement
workbucket attached to the
associated LTORG statement.

A - The total object length of the literals
comprising the 8-byte string in the
associated literal pool.

B - Same as A, except as applicable to the
4-byte string.

C - Same as A, except as applicable to the
2-byte string.

LITERAL ADJUSTMENT TABLE

bytes header

;
a:]
ID | not used
.

bytes
1 .3 1 ;’3' 1 3' 1 '3

— s / 4
ESD/ID| A [ESD/ID B [ESD/ID| C |ESD/ID| D I

Yy Y I

1 f 1/ —

ID - Table identifier ('60') indicates
Literal Adjustment Table.

ESD/ID - External Symbol Dictionary Iden-
tification of the 3-bytes that
immediately follow this byte.
Typical of four shown.

A - The adjusted assembler address of the
beginning of the 8-byte string of
literals whose pool is described by
this table.

ESD/ID - Same as previously described for

this table.

B - Same as A, except as applicable to the
4-byte string.

ESD/ID - Same as previously described for

this table.

C -~ Same as A, except as applicable to the
2-byte string.

ESD/ID - Same as previously described for

this table.

D - Same as A, except as applicable to the
l-byte string.

NOTE: There is one such table for each
LTORG or END assembler instruction in
the program.

Indicates the end of the

Trailer:
Literal Adjustment Table.

bytes 1 1 1 1

7F 7F 7F 7F

CROSS REFERENCE TABLE RECORDS

bytes
1 8 1 2 2 3
I'l, ’l"l ',f H ﬂ H
A B C D E F
llll‘ - I’l’ rL J Lo

V7 ~3f

A - Table Identification ('07') indicates
Cross Reference Table Record.

B - Symbol as described in Symbol List
Segment Entry.

C - Flag; O Base symbol (e.g., initial
definition)
1 Reference to symbol

D - Statement number associated with the
statement where the symbol was defined.

E - The length attribute of the symbol.

F - The value attribute of the symbol
(usually an address).

RELOCATION DICTIONARY TABLE RECORDS

bytes 1 1 1 1

3
=

A B C D E
o

A - Table Identifier ('08') indicates Relo-
cation Dictionary Table Record.

B - Position ESD/ID number of the control
section where the address constant is
located.

C - Relocation ESD/ID number of the control
section where the symbol is defined.

D - Flag

Bit Description
1-3 Not used.
4 0 A- or Y-type constant and second

operand of CCW.
1 V-type constant.

5-6 Length constant in bytes:
00 1 byte.
01 2 bytes.
10 3 bytes.
11 4 bytes.

Relocation factor added .
Relocation factor subtracted.

Next load constant has different
position or relocation ESD/ID.
Next load constant has same
position or relocation ESD/ID.

NOTE: This bit is set during the
post-process phase.

Appendix I. Table Formats 109

E - Assembler assigned address of a symbol
used in an A-, Y-, or V-type constant,
or second operand of CCW.

PHASE 4 LOCAL DICTIONARIES

OPEN CODE ORDINARY SYMBOLS

bytes
2 1 188 2 1 2 2
" AI| fl ml Ilall I h I
ptr ag sym ptr type engt| scale
AR N

ANy

This format is for DC/DS Relevant Ordinary
Symbol Table entries, or symbol whose at-
tributes are referenced in conditional
assembly statements.

"A" ptr - Same as macro mnemonic name entry.
Flag

Bit

Description

0 0 Synonym (part of a chain).
1 End of the chain.

1-4 1000 Tags.

1001 Parameters.

1010 symbols.

1100 Local A variables.

1101 Local B variables.

1110 Local C variables.

5-7 Length (L-1) of BCD entry.

Symbol - The symbol in character format.

"a" ptr - Same macro mnemonic name entry.

Type - Type attribute (see Table of Param-
eter Type Attributes).

Length - Length attribute.

Scale - Scale attribute:

Bit Description
0 0 Positive.
1 Negative.
1-15 Scale attribute.

RELEVANT ORDINARY SYMBOLS

bytes 2 1 1to8 2
)

<

"A" ptr flag | symbol "a" ptr

)
\

This format is for entries from Relevant
Ordinary Symbol Table.

110

"A" ptr - Same as macro mnemonic name entry.
Flag - Same as open code ordinary symbols.
Symbol - Same as open code ordinary

symbols.
"a" ptr - Same as macro mnemonic name entry.

SEQUENCE SYMBOLS

bytes

2 1 2:08 2 3 2

Ve
)

NOTE/
POINT B

A\
ady

"A" ptr | flag symbo! "a" ptr

3%

"A" ptr - Same as macrc mnemonic name entry.
Flag - Same as open code ordinary symbols.
Symbol - Same as open code ordinary symbols.
"a" ptr - Same macro mnemonic name entry.
Note/Point - The pointer to the block in
which the fully edited text
for the statement named by the
sequence symbol begins.

B - The position of the beginning of the
sequence symbol fully edited text rela-
tive to the beginning of the block in
which it is located.

LOCAL SET VARIABLE SYMBOLS

bytes
2 1 2 to 8 2 1

"A" ptr flag symbol "a" ptr C

{¢
3 r

“A" ptr - Same as macro mnemonic name entry.

Flag - Same as open code ordinary symbols.

Symbol - Same as open code ordinary symbols.

"a" ptr - Same as macro mnemonic name entry.

C - The declared dimension of the local set
variable symbol. Will be zero if the
symbol is undimensioned.

MACRO PROTOTYPE SYMBOLIC PARAMETERS

bytes 2 1 2t0 8 2

vf

“A" ptr flag symbol b

P
35

This format is for keyword and positional
type.
"A" ptr - Same as macro mnemonic name
entry.
Flag - Same as open code ordinary symbols.
Symbol - Same as open code ordinary
symbols.
D - The operand position number assigned
to the symbolic parameter.

PHASE 5 DICTIONARY ENTRY

SET VARIABLES

SETA Variable

bytes 1 4 4
ya— 7 G Vg4
—3/ v — 7
n entry entry entry
1f 9 1

Length of complete entry is equal to

4n + 1. There are four bytes per sub-
entry. n = SET variable dimension.
This byte is not present if n = 1, i.e.
an undimensioned SET variable.
SETB Variable
bytes 1 1 1 1
n entry entry entry

Length of complete entry is equal to
n/8 + 1 (i.e., each SETB variable is
evaluated in one bit. O equals false,
and 1 equals true). There is one byte
per entry; each entry contains up to

8 SETB evaluations. n = same as SETA
variable.

SETC Variable

bytes
1 1 8 1 8
{ Com {

: ~3)J T ~—5f
n Lo} data Lo data

: . ! y

27 7/

le——— Entry ——J

Length of entry is equal to 9n + 1.

There are nine bytes per entry.

n Same as SETA variable,

L Length of character string (data),
true length.

MACRO DICTIONARY HEADER

bytes
4 4 4 3 2 1 2

F—1—Ff 5 f 24 No
dummy ACTR ACTR | NOTE/ delta | of size of

loop cfr POINT blks | MD
g ¢

Header attached to subsetted dictionaries
output by phase E4sS.

Dummy - Not used.

ACTR Loop - The A counter loop limit (i.e.,
the number of passes through
the loop).

ACTR ctr - The A counter current loop count
(i.e., the number of times the
loop has been passed).

Note/Point - Location of block on SYSUT3 in

which the macro definition
fully-edited text begins.

Delta - Location of the prototype fully

edited text relative to the begin-
ning of the block.

No. of blks - The number of blocks of 256
bytes on SYSUT3 in which the
dictionary is contained.

Size of MD - The size of the macro diction-

ary in bytes.

bytes

4 4 4 3 2 1 2
G {C { L { ¢

4 7 E&d 27

diet | ACTR | ACTR | NOTE/ | NOTE/

addr | loop ctr POINT | POINT | UT1 [aM-
——* 1 1f

Header as modified during Phase 5 proces-
sing of macro instruction.

Dict Addr - The location of the next higher
level local dictionary. If
the macro being processed is
not an inner macro, this pointer
points to the open code local
dictionary.

ACTR Loop - Same as macro dictionary header.

ACTR ctr - Same as macro dictionary header.

Note/Point - The location of the block in

(3 bytes) which the end-of-macro instruc-

tion record is located. (2
bytes) - The location of the
end of end-of-macro instruc-
tion record relative to the
beginning of the block in
which it is located.

UTl - A switch to indicate:

0 Input is from SYSUT3.
1 Input is from SYSUT2.

AM-I - Delta, the location of the beginning
of the macro instruction text, rela-
tive to the block in which it is
located.

PHASE 4 GLOBAL DICTIQNARY

MACRO MNEMONIC NAME ENTRY

bytes 2 1 1to8 2 3
4§ 4 f—

"A" ptr flag | mnemonic "a" ptr B

£ L L L

77 77

"A" ptr - Big A pointer, backwards chain
pointer to synonym

Flag
Bit Description
0 0 Normal global variables.

Appendix I. Table Formats 111

Bit Description

1 Obsolete global variables
(global variables which have
been declared apart from the
current part of the source
deck being processed, such as
macro definition or mainline
program) .

NOTE: Bit zero is used for global
variables only

1-4 0000 Op codes.
0001 Pseudo op codes.
0010 Extended mnemonic.
0011 Macro names.
0100 Global A variables.
0101 Global B variables.
0110 Global C variables.

5-7 Length (L-1) of BCD entry.

Mnemonic - The macro name in byte format.

"a" ptr - Little "a" pointer to a location
in the phase 5 dictionary that
will contain the subsetted entry
for this mnemonic.

B - Note/Point Address. Until the diction-
ary associated with this mnemonic is
subsetted, this entry will contain the
NOTE'd location of the beginning of the
fully edited text for the macro defini-

112

tion associated with this mnemonic.
After the local dictionary associated
with this mnemonic has been subsetted,
this field contains the NOTE'd location
of the subset dictionary which will in
turn contain the NOTE'd position of the
macro definition fully-edited text for
this mnemonic.

GLOBAL SET VARIABLE SYMBOL ENTRY

bytes

variable “o" ptr C D

“A" ptr flag

"A" ptr - Same as macro mnemonic hame entry.

Flag - Same as macro mnemonic name entry.

Set Variable Symbol - The set variable sym-
: bol in byte format.

"a" ptr - Same as macro mnemonic name entry.

C - Dimension, the declared set variable
dimension., Will be zero if undimen-
sioned.

D - Activity bit pointer, points to a unique

bit which when on indicates that the
global symbol has already been defined
within the macro or open code currently
being processed (i.e., duplicate local
definition).

APPENDIX J. HASH TABLE

A hash table is used by the assembler for
inserting or locating variable or fixed
length record entries in symbol tables and
macro dictionaries. A hash table consists
of space reserved for fixed length address
entries (called pointers) which point to
locations in the dictionaries/tables. The
range of the hash table is the number of
such pointers that can be placed in the
reserved space. When it is desired to enter
a symbol in the dictionary (e.g., enter a
Global symbol declaration) oxr locate an
entry in the dictionary (e.g., to obtain

the relative address of a symbol) the
associated symbol must first be randomized
to produce an index number (a technique
called hashing). The randomizing algorithm
is such that the resulting index number will
be a whole number between zero and the hash
table range minus one. This index number

is then used to index into the hash table
and inspect the associated pointer (address
entry) in the hash table. This entry will
be zero until a symbol record entry, random-
izing to this index number, has been entered
in the dictionary/table. Records are
entered in the dictionary sequentially and

a dictionary pointer, containing the next
available address in the dictionary, is used
for inserting records in the dictionary.
Several different symbols (called synonyms)
may randomize to the same index number.
Because this index number points to an
associated entry in the hash table where
only one address can be stored, chaining
must be used to enter or locate the synonym
records. Two types of chaining are used by
the assembler, they are; 1) forward chaining,
used for symbol and symbol list tables,

and 2) backward chaining, used for the macro
dictionary.

To enter records in the symbol and symbol
list tables, the symbol whose record is to be
entered is hashed to obtain an index number.
This number is used to point to the associ-
ated address entry in the hash table. The
hash table entry is inspected. It will be
zero if no other symbols have yet hashed to
the same index number (i.e., this is the
first symbol record entry for this index
number). If this is not the first entry of
a record whose symbol hashed to this index
number, the hash table will always contain

hash .
Symbol = "IDENTIFY" —ci;-?-d—> index number = 5
|
Hash Table Dictionary Pointer
DEF
AAA
Symbol Table
first ABC
record
AAA
second BCD
record
ABC
third
record 000
BCD
DEF

Hash Table And Forward Chaining

the address of the first symbol record
entered in this chain. At that address will .
be a symbol record containing a pointer

Appendix J. Hash Table 113

field. This pointer field will have either
a chaining address pointing to the location
of the next record in the chain or it will
be zero, which indicates that this is the
last (or only) record in the chain. If the
pointer field contains a chaining address,
the next record in the chain will have a
pointer field the same as just described for
the first. If this pointer field is zero,
it indicates that this is the last record

in the chain. If it is not zero, the next
record in the chain will have to be inspected
as was this record, and so on until the last
record in the chain is encountered (zero
pointer field), or a duplicate record is
encountered. If a duplicate record is
encountered, the scan is terminated and the
record is not entered. If a duplicate
record is not encountered before the zero
pointer field, the dictionary pointer with
the next available storage address is
obtained. This address is placed in the
pointer field of the previous record that
contained a zero pointer field, the record
is stored in the indicated address, and the
dictionary pointer is updated to reflect

the next available storage address, by the
length of the record just entered.

The procedure used to locate records in
the symbol and symbol list tables is the
same as entering, except when the compared
records are equal, the pertinent informa-
tion is extracted, or the value information
is inserted, as the case may be at the
time. If no duplicate entry exists during
this procedure, the symbol is either not
defined previously, or undefined, depending
on the table being processed.

To enter records in tche Macro dictionary,
the symbol whose record is to be entered is
hashed to an index number. This index
number is used to point to an associated
address in the hash table. The hash table
entry is inspected. It will be zero if no
other symbols have hashed to this same
index number. If this is not the first
entry, the hash table will always contain
the address of ‘the last symbol record
entered (i.e., the most current entry).

If the hash table contains an address,

the record at that address will have a
chain pointer field containing the address
of the previous entry in the chain, or no
pointer field at all, if it is the first
entry. The chain will be scanned, starting
with the last entry made, and continuing
through until either a duplicate record, or
the first record is encountered. If a
duplicate record in encountered before the
first entry in the chain, the scan is ter-
minated and the record is not entered. If
a duplicate entry is not encountered before
the first entry, the address of the last
record in the chain is obtained from the
hash table and placed in the pointer field

114

hashed

index number = 5
to

Symbol = "IDENTIFY"

Hash Table
f DEF
BCD
General Dictionary
first
record
AAA
second
record AAA
ABC
third
record ABC
BCD
DEF

Hash Table And Backward Chaining

of the record being entered. The address

of the dictionary pointer is obtained and
replaces the address just extracted from

the hash table. The record is stored at the
address now indicated by the hash table.

The dictionary pointer is updated to indicate
the new available storage address, by the
length of the record just stored.

The procedure to locate records in the
macro dictionary is the same as entering,
except when the compared records are equal,
the pertinent information is extracted, or
the value information is inserted, as the
case may be.

APPENDIX K. APPROXIMATE MAIN STORAGE ALLOCATION

Phase | GETMAIN System
PHASE | ASM | MAC | INP | Logic | Minimum Functions

El 470 540 240 2490 2620 4170
E2 470 540 240 5870 2620 4170
E2A 470 540 240 1520 2880 3310
E3 470 540 - 5810 2620 3310
E3A 470 540 - 4480 2620 3310
E4P 470 540 - 4860 3840 3310
E4M 470 540 - 4770 3840 3310
E4S 470 540 - 1210 4350 3310
E5P 470 540 - 4780 3530 3310
E5 470 540 - 4760 3330 3310
E5A 470 540 - 4620 3330 3310
E5E 470 540 - 600 3330 3310
RTA RTB
07/07A 470 | 1400 - 2880 1780 3610
07/078 470 | 1400 - 2820 1780 3610
071 470 | 1400 - 1060 1160 3310
08/08A 470 | 1400 - 2680 2980 3610
08/08B 470 | 1400 - 2680 2920 3610
09 470 | 1400 | 350 4640 3930 3770
091 470 | 1400 | 350 3380 4500 3770
10 470 | 1400 | 350 4160 4450 3770
108 470 | 1400 | 350 7330 1200 3770
21A 470 | 1400 | 350 5850 1200 3770
21B/C 470 | 1400 | 350 6570 400 3800
218/D 470 | 1400 | 350 6570 400 3800
PP 470 | 1400 | 350 5090 3000 3770
DI 470 | 1400 | 350 5910 - 3770

Appendix K. Approximate Main Storage Allocation 115

APPENDIX L. CONTROL PROGRAM SERVICES
Macro Purpose
CALL Passes control from a program,

CHECK

CLOSE

DCBD

DELETE

FIND

FREEMAIN

GETMAIN

LINK

LOAD

116

load module, or segment of an
overlay module to a specified
entry point in another program.

Waits (if necessary) for the com-
pletion of a read or write opera-
tion and detects errors and
exceptional conditions.

Closes a data-control-block after
a data set has been processed.

Generates a DSECT statement that
provides a symbolic name for the
fields within a data control block.

Indicates to the supervisor that
an in-storage copy of a load mod-
ule (previously acquired by a
LOAD macro-instruction) is no
longer required. The storage
occupied by that load module is
freed for other uses.

Places the address of the first

block of a specified partitioned
data set member in the indicated
data-control-block.

Releases one or more areas of main
storage previously acquired through
one or more GETMAIN macro-
instructions.

Requests the supervisor to allocate
one or more areas of main storage
for assembler use.

Passes control from one load mod-
ule to a specified entry point in
another load module, keeping both
modules resident in main storage.

Acquires a specified load module
and causes the supervisor to

retain the module for use by the
task using the LOAD. If a copy

of the load module is not currently
available in main storage, one is
fetched.

Macro

NOTE

OPEN

POINT

READ

RETURN

SEGWT

TIME

TCLOSE

WRITE

XCTL

Program

Requests the relative position
within a volume of the blcck just
read, or written, for the direct
retrieval of the block at a later
time.

Initializes one or more data-
control-blocks so that their
associated data sets can be
processed.

Alters the sequential processing
of a data set such that the next
read or write operation will take
place at a previously NOTEd
position.

Retrieves the requested block from
an input data set and places it in
a main storage area.

Indicates normal termination of
a task and returns control to a
higher level program or task, or
to the control program.

Causes a specified segment to be
loaded into main storage.

Provides the time of day in
Register 0 and the current date
in Register 1.

Temporarily closes a data-control-
block after a data set has been
processed.

Transfers a block from the user's
main storage area to a physical
sequential data set.

Passes control from the load
module in which it appears to the
load module it specifies. Only
the new module remains in main
storage.

APPENDIX M. CONTROL PROGRAM SERVICES USAGE

PHASE
PHASE sysutt | sysutz | sysuta | svsin SYSLiB SYSPUNCH LOGIC
OPEN OPEN OPEN OPEN OPEN GETMAIN
£l WRITE READ LOAD (INP)
CHECK CHECK
WRITE READ READ FIND ___DGBD__ | _E2___ |
E2/E2A CHECK | WRITE CHECK | READ DELETE (INP)
NOTE CHECK CLOSE CHECK GETMAIN E2A
TCLOSE | POINT NOTE FREEMAIN
TCLOSE POINT
CLOSE
READ WRITE WRITE FREEMAIN E3
cHeck | cmeck | cmeck || |]
E3/E3A NOTE NOTE
TCLOSE | TCLOSE
WRITE READ READ GETMAIN E4p
e4p/Eam/ | cHECK | check | wrte | | | eSeeteaaoo o g
E4S NOTE TCLOSE | cHECK FREEMAIN E4M
TCLOSE NOTE RS R —
POINT GETMAIN E4s
TCLOSE FREEMAIN
READ WRITE READ GETMAIN Esp
cHeck | cueck | cweek | | 1 loiieaaaoto o]
Eg;//EESS/E NOTE TCLOSE | POINT FREEMAIN E5
POINT cose | || et ae et e
TCLOSE FREEMAIN ESE
READ READ WRITE GETMAIN 07
WRITE CHECK | CHECK FREEMAIN | ©]
OQQZA/ CHECK TCLOSE | TCLOSE SEGWT oon
NOTE _ CALL__ ___ e]
POINT CALL o7
READ GETMAIN
CHECK FREEMAIN
o7l WRITE SVC/0
NOTE
POINT
' SYSPRINT
READ WRITE READ GETMAIN 08
WRITE READ WRITE - FREEMAIN _ | _ ______]
08084 | check | cHEck | cHEcK SEGWT 0BA
NOTE TCLOSE TCLOSE _CALL
POINT CALL BET)
WRITE READ READ OPEN OPEN
09 CHECK | cHECK | cHECK WRITE FREEMAIN
NOTE TCLOSE | TCLOSE CHECK
READ WRITE WRITE GETMAIN
POINT CHECK CHECK FREEMAIN
091 CHECK OPEN OPEN
WRITE
NOTE
READ WRITE READ GETMAIN
1o CHECK | CHECK | CHECK FREEMAIN
WRITE READ WRITE
POINT TCLOSE | TCLOSE
108 TCLOSE GETMAIN
FREEMAIN
WRITE READ GETMAIN
2IA CHECK | cHECK FREEMAIN
READ WRITE
TCLOSE | TCLOSE
e, | WRITE READ READ WRITE WRITE GETMAIN
2 CHECK | CHECK | CHECK CHECK CHECK FREEMAIN
NOTE TIME
LINK
READ READ READ WRITE WRITE
o CHECK | CHECK | WRITE CHECK CHECK
NOTE WRITE CHECK
POINT CLOSE | CLOSE
READ WRITE CLOSE
CHECK CHECK
DI POINT CLOSE
CLOSE
NOTE

Appendix M, Control Program Services Usage 117

8TT

Entry Type
Param- 4 bytes 4 bytes
SYSNDX eter NDX L Character | Binary
Numbe Value Value
SYSECT Not lcsect| L BCD Name
Used
Name field of Kt Name or
Character string T |CHAR L Character String
Operand
ini 3 bytes K
Self-defining Term T |HBD e et L .
(Hex, Binary, Decimal) Binary Character Representation
Kl
Self-defining T |CSD 3 bytes ‘c! L Character Representation
character Binary
5 bytes L K! .
Symbol T |SYM Attributes of c L Symbol Name
el P E P E
2 bytes| 2 bytes| 2 bytes arameter ni:ry 2 bytes arameter Entry
Sublist T OISUB L] K | N (L Type 1, 2, 3, L Type 1,2, 3 N
1 or 4 above ! 2 or 4 above
T = Type attribute
L = Length of following field (For HBD, CSD, CHAR and SYM L = K')
'e! = character flag — a character string follows

Tot. L = Total length of sublist entry

K* (not sublist) = Number of characters in operand (excluding commas)

K' (sublist) = Number of characters between outer commas in a sublist

N' = Number of operands in a sublist

N!
N!

1 if the operand is a sublist

0 if the operand is omitted

SHIGLNA H16VYL dALIWYIVd NOILONYILSNI O¥OVW *N XIANHAJV

The terms in this glossary are defined
relative to their use in this publication
only. These definitions may differ from
those in other publications.

Assemble: To prepare an object language
from a symbolic language program by
substituting machine operation codes for
symbolic operation codes and absolute or
relocatable addresses for symbolic
addresses.

Attributes: There are six kinds of attri-
butes in the macro generator: Type,
Length, Scaling, Integer, Count, and
Number. The assembler portion processes
only the length attribute.

Basic Partitioned Access Method (BPAM):
A method of storing and retrieving
sequences of data "members" belonging
to a data set stored on a direct-access
device; the data set contains a direc-
tory that relates the member name with
the address where the sequence starts.

Basic Sequential Access Method (BSAM):
A method of storing and retrieving
physical blocks of data from a
sequentially organized data set.

Concatenation: The process of linking
together, chaining, or joining.

Control Program: A collective term refer-
ring to all control routines of the
operating system.

Control Section: The smallest separately
relocatable unit of a program; that
portion of text specified by the pro-
grammer to be an entity, all elements
of which are to be loaded into contigu-
ous main storage locations.

A block of coding that can be relocated,
independently of other coding, at load
time without altering or impairing the
operating logic of the program; it is
identified by a CSECT or START
instruction.

Data Control Block (DCB): A region in
storage used for communication between
the source program, the control program,
and the access routines.

A control block through which the infor-
mation required by access routines to
store and retrieve data is communicated
to them.

GLOSSARY

Data Set: A named collection of data.

Direct Access: Retrieval or storage of
data by a reference to its location on
a volume, rather than relative to the
previously retrieved or stored data.

External Symbol Dictionary (ESD): Part of
an object or load module produced by
the assembler that identifies the
external symbols and entry-point symbols
referenced by and defined within the
module.

Function Block: A portion of the coding
that constitutes a logical element.

Global Dictionary: A table containing macro
mnemonics and global variable symbols.

Global Variable Symbols: Symbols that com-
municate values between statements in
one or more macro-definitions and state-
ments outside macro definitions.

Global SET symbols are the only global
variable symbols.

Hashing: Processing a symbol in order to
arrive at an address that falls between
two limits.

Hash Table (HT): A table of addresses that
point to entries in a dictionary.

Inner Macro-instruction: A macro-instruction
used as a model statement in a macro-
definition.

Linkage Editor: A program that produces a
load module by transforming object mod-
ules into a suitable format.

Literal: A representation of a constant
which is entered into a program by
specifying the constant in the operand
of the instruction in which it is used.
The assembler stores the value specified
by the literal in a literal pool, and
places the address of the storage field
containing the value in the operand field
of the assembled source statement.

Literal Pool: A portion of the object
program containing literals processed
by the assembler.

Load Module: A module in a format suitable

for loading into main storage by the
control program.

Glossary 119

Local Dictionary: A table containing local
variable symbols and sequence symbols.

Local Variable Symbols: Symbols that com-
municate values between statements in
the same macro-definition, or between
statements outside macro-definitions.

The following are local variable symbols:

1. Symbolic parameters
2. Local BET symbols
3. System variable symbols

Logical Element: An intermediate level of
logic, comprising a group of function
blocks, which fulfills one of the spec-
ific objectives of a major component.

Logical Record: A record from the stand-
point of its content, function, and use
rather than its physical attributes;
i.e., one that is defined in terms of
the information it contains. (Contrasted
with Physical Record.)

Macro-definition: A set of statements
that provides the assembler with the
mnemonic operation code and the format
of the macro-instruction, and the
sequence of statements the assembler
generates when the macro-instruction
appears in the source program.

Macro-instruction: A source-program state-
ment for which the assembler generates a
sequence of assembler language statements
for each occurrence of the macro-
instruction. Three types of macro-
instructions may be written:

1. Positional - operands in fixed
order

2, Keyword - operands in variable
order

3. Mixed-mode - combination of above

Macro-instruction Prototype: The second
statement of every macro-definition; it
specifies the mnemonic operation code
and the format of all macro-instructions
that refer to the macro-definition.

Main Storage: All addressable storage from
which instructions can be executed or
from which data can be loaded directly
into registers.

Major Component: The largest describable
logical division of the assembler pro-
gram, i.e., a phase.

Model Statements: The macro-definition
statements from which the desired
sequences of assembler language state-
ments are generated.

120

Module: One or more relocatable units of a
program processed in one execution.
The input to, or output from, a single
execution of the assembler; a program
unit that is discrete and identifiable
with respect to the assembling process.

Object Program: A machine-language program
which is the output after translation
from the source program.

Operating System/360: A modular and device
independent operating system requiring
direct-access-storage-device resicence;
minimum core storage requirement is 32K.

Ordinary Symbol: One alphabetic character
followed by zero through seven alphameric
characters.

Outer Macro-instruction: A macro-instruction
that is not used as a model statement in
a macro-definition.

Overlay: A section of a program loaded into
main storage, replacing all or part of a
previously loaded section.

Physical Record. A record from the stand-
point of the manner or form in which it
is stored, retrieved, and moved; 1i.e.,
one that is defined in terms of physical
qualities, or is meaningful with respect
to access. (Contrasted with Logical
Record)

Pointer: An address used to point to a
table or file entry.

Prototype Statement: See Macro-instruction

Prototype.

Pseudo-operation Code: A hexadecimal one-
byte code assigned to all assembler
instructions (pseudo-ops) by programming
systems for internal use.

Record: A general term for any unit of data
that is distinct from all others when
considered in a particular context.

Relevant Ordinary Symbol: An ordinary sym-
bol relevant to the macro generator, i.e.,
for macro-instruction generation or
conditional assembly.

Relocation Dictionary (RLD): Part of an
object or load module that identifies
all relocatable address constants in
the module.

Relocation Identifier: A two-digit hexa-
decimal value used to associate an

instruction with a control section for
relocation purposes.

SET Symbols: Variable symbols defined in
the name field of SETx statements.

Significant Comma: A comma that delimits
(defines end of field) the parameters
of the operand list or the elements of
a sub-list.

Significant Format: The source statement
image with variable symbols, etc.,
replaced by flags and pointers.

Source Program: A series of statements in
the symbolic language of the assembler
that is input to the translation process.

Synonyms: Two or more symbols that result
in the same address when they are hashed
by a hashing routine.

System Macro-instructions: Macro-
instructions that correspond to macro-
definitions prepared by IBM.

Task: A unit of work for the central
processing unit from the standpoint of
the control program; the basic multi=-
programming unit under the control
program.

Test Translator (TESTRAN): A facility that
allows various debugging procedures to
be specified in assembler language
programs.

Utility Data Set: In Operating System/360,
a data set reserved for intermediate
results.

Variable Symbol: A type of symbol that is
assigned different values by either the
programmer or the assembler, thus
allowing different values to be assigned
to one symbol. There are three types of
variable symbols: symbolic parameters,
system variable symbols, and SET symbols.
Variable symbols consist of an ampersand
followed by an ordinary 1 - 7 character
symbol.

Work Bucket: Data added to a text record

to hold intermediate and/or final results
of processing that record.

Glossary 121

INDEX

Additional facilities, use of 2
AGO statement record format 90
AIF statement record format 90
Assembler edited text 89

literal 94

punch 94

title 94
Assembler instruction codes, internal
Assembler, purpose of 1
Assembly phases 6, 22
Attribute record format 90
A-type constant evaluation 38

CCW evaluation 38
Character string format 91
Concatenation, macro evaluation 91
Conditional assembly 16
Constants, type A, Y, V and S
evaluation 38
Control Program Services 2, 116
usage 117
Cross—~reference 32
table format 109
write 40
CSECT 26, 34

DC/DS operand work bucket 98
Decimal constant evaluation 34
Declarative statement processing 38
Delimiter work bucket 929
Diagnostic messages, write 41
Diagnostic phase 41
Dictionary collection 13, 85

records 11
Dictionary entries

Phase 4 110, 111

Phase 5 111
Dictionary

external symbol 25

global 14

local 14

permanent 13
Dictionary header format 111
DROP instruction processing 34
DSECT 26, 34
D-type constant evaluation 36

Edited text

assembler 89, 94

fully 88

partially 85
END assembler instruction 22, 34
End of Data Set record 84
End-of~Macro instruction record 17
END record, write 40
ENTRY assembler instruction 25
Error record 84, 90
ESD Adjustment Table 29
ESD

build 25

format 108

output 29
E-type constant evaluation 36
EXEC parameter processing 8

122

EXTRN assembler instruction processing
Evaluation

decimal constant 34

expression 34, 104

machine instruction 36

work bucket 34, 101

Fixed point constant evaluation 36
FLAGA 82

Floating point constant evaluation 35
F-type constant evaluation 36

Fully edited text 88

Global dictionary 14
Global pointer 87

Hash Table 113
Highest severity code 41
H-type constant evaluation 36

ICTL statement processing 8
Iterate mode 26

Level number of phase 2
Listing control instructions,
processing 34
Listing, program 38
Literal Adjustment Table 30, 32
format 109
Literal Base Table 28, 30
format 108
Literal collection 22
Literal Table format 107
Literal work bucket 101
Local dictionary 14
Local pointer 87
Logical statement format 85
LTORG statement
processing 22
work bucket 101

Machine instruction evaluation 36
Machine requirements 1
Macro generation and conditional
assembly 6, 8, 16
Macro generator output record 89
Macro instruction
operand reference 91
operand value record 93
parameter type-attributes 105
sublist operands 93
table entries 118
Macro Name Table
build 10
format 106
Macro prototype
header pointer 87
positional parameter pointer 87
Main storage
additional 2
allocation 115
Major Components
identification 2
functions of 6

25

MEND record 90
MEXIT record 90
Multi-defined symbols 32

Normal mode 26
Object program, punch 38

Object record 95
Open code signal 85

Operand field symbol work bucket 100

Operand list 86
Operating System 1

Programmer's Guide 9
Operator/delimiter work bucket 99
Operator hierarchy 91
OPTION card 41

Parameter Table 17
Partially edited text 85
Permanent (Resident) Dictionary 13
Phase DI 7, 41
Phase E1 6, 8
Phase E2 6, 9
Phase E3/E3A 6, 11
Phase E4P/E4M/E4S 6, 13
Phase E5P/E5/ES5A/ESE 6, 16
Phase PP 7, 40
Phase 07, 07A, 07B 6, 22
Phase 071 6, 24
Phase 08/08A/08B 7, 25
Phase 09 7, 27
Phase 09I 7, 29
Phase 10 7, 31
Phase 10B 7, 34
Phase 21A 7, 36
Phase 21B/21C/21D 7, 38
Phase version and level 2
Post processor 40
Program listing, print 38
Program

flow 2

organization 2
Programmer's Guide, Operating System
Program segment

ASM 6, 8
INP 6, 8
MAC 6, 8

RTA 6, 22

RTB 7, 27
Prototype statement, record format
PUNCH assembler instruction 28

Record type-indicators 81

Register Availability Table 34
record 94

Re-iterate mode 26

Relevant Ordinary Symbol Table 11
record format 110
segment format 106

Relocation List Dictionary Table .38
write 40
format 109

REPRO assembler instruction 28
record format 85

Resident Dictionary 13

Self-defining term

92

record format 93

work bucket 100
Sequence of evaluating expression
operators 91
SET statement record format 112
Source record 84, 89
Standard operator list 86
Standard pointer 86
START assembler instruction 26
Statement work bucket 97
Storage assignment 25
S-type constant evaluation 38
Substring format 91
Switches Table 34

record 95
Symbolic length work bucket 929
Symbol List Table

build 24

segment format 107

section format 107
Symbol substitution 31
Symbol Table

build 27

format 108
Syntax scan 11
SYSIN 2
SYSLIB 2
SYSPRINT 2
SYSPUNCH 2

SYSRES 2
SYSUT1 2
SYSUT2 2
SYSUT3 2

System environment 1

Table identification 106
Termination, abnormal 17
TESTRAN Symbol Table 28
Text scan, partial 9
Translate Table 80
Type-indicators, record 81

USING instruction processing 34

Variable symbol, record format 91
Version number of phase 2
V-type constant 25

evaluation 38

Work bucket
add to input records 122
types of 22
evaluation 34

Work bucket format
DC/DS operand 98
evaluation 34, 101
literal 101
LTORG statement 101
operand field symbol 100
operator/delimiter 99
self-defining term 100
statement 97
symbolic length 929

Y-type constant

evaluation 38
programmer's flag 41

Index

123

READER’S COMMENT FORM

IBM S/360 Operating System Form Y26-3598-0
Assembler (32K) Program Logic Manual

¢ Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs?] 1
® Did you find the material:
Easy to read and understand? O O
Organized for convenient use? 1 [
Complete? O O
Well illustrated? O 0
Written for your technical level? N O
® What is your occupation?
¢ How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? O
For information about operating procedures? [] As a reference manual?]

Other
® Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y26-3598-0

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY . ..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 452

TBM

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

“¥*S°n UT po3uTId 09¢/ JWEI

0-86GE-9CA

Y26-3598-0

BV

®
International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New York

0-86G€-92X °¥°S°N UT pa3uTid (9 ? Wl

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	replyA
	replyB
	xBack

